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2 0 Introduction

0 Introduction

Within étale cohomology, the “proper base change theorem” can be considered to be

of central importance. The theorem represents one of the special features within étale

cohomology required for the proof of the “smooth base change” theorem or other high-

level theorems. At the same time, elaboration of the “proper base change theorem” is

either embedded within an extensive body of work [1] [2] or strongly reduced to core

statements [3] with a hard to follow chain of argumentation. This paper aims to bridge

the gap between these extremes. It is intended to provide access to understanding of

the core chain of argumentation for all those readers who have a basic knowledge of a

well-defined, limited number of mathematical areas, with emphasis on:

Algebraic geometry: it is assumed that readers are familiar with basic constructions

and results within the theory of schemes, such as those presented in [4]. In addition,

we strongly recommend familiarity with the theory of quasi-coherent sheaves and their

cohomology. We not only use results from this theory, but also make use of its proof

techniques. Good sources for further reading are [4] and [5].

Category theory: Quite often, we will use the language of locally pesentable cate-

gories, that allow us to elegantly derive central technical results. The theory as covered

in [6] can be considered as sufficient basic knowledge. Alternatively, [7] may also serve

as a fitting reference.

Homological algebra: We assume familiarity with the language of abelian categories

and derived functors as well as with spectral sequences, in particular Grothendieck’s

spectral sequence. A good reference for these elements may be found in [8].

The complete master thesis is structured as follows:

In chapter 1, we generalize the notion of a sheaf on a topological space. Thereby

we observe, at the level of sheaves there is no difference between the category of open

subsets of X and the category of local isomorphims over X (see theorem 1.9). This

suggests definition of the class of local isomorphisms on a scheme in order to“refine” its

underlying topology. We introduce the notion of a site which serves as a generalization

of topological spaces in the sheaf sense. The notion of site comes with a canonical notion

of a sheaf. We use the theory of locally presentable categories to prove the category

of sheaves to satisfie good properties. In particular, the category of abelian group

objects of sheaves is an abelian Grothendieck category so we can apply the machinerie

of derived functors. We then define sheaf cohomology to be the derived functor of some

section functor. Results within this context are well known for ordinary sheaf theory.

Related proof sequences, accordingly, are only sketched or referenced in order to prevent

overloading this chapter.

In chapter 2, we define étale morphisms of schemes. They mimic the notation of local
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isomorphisms within complex analytic topology. As this theory is primarily rooted in

well elaborated commutative algebra, we only state later on required properties. [5]

may serve as a comprising source for readers with further interest in details. We define

the étale site on a scheme X as the category of étale morphisms together with jointly

surjective families as coverings. And we define étale sheaves as sheaves on the étale site

and étale cohomology as sheaf cohomology of the global section functor. We show that

some étale presheaves satisfie the sheaf condition, including representable presheaves

and a suitible generalization of the structure sheaf of some scheme X to the étale

site. We will point out that étale cohomology generalizes cohomology of quasi-coherent

sheaves. By using the theory base of chapter 1, then, allows us to elaborate theorems

specifically valid within the category of étale sheaves to provide a solid theory for étale

cohomology. The main focus lies on the compatibility between étale cohomology and

cofiltered limits of schemes. This general framework provides a main technic within the

proof of the proper base change theorem.

In chapter 3, we introduce the notion of étale neighbourhoods and stalks. Then, we

explore the algebraic properties of the étale stalk of the generalized structure sheaf.

The étale stalk at a point, thereby, turns out to be the strict henselianization of the

Zariski stalk of the structure sheaf at that point. We use our so far gained insights and

results to prove the direct image of a finite morphism of schemes to be exact. This is a

useful property of the étale site, while not being true for the Zariski topology.

In chapter 4, we introduce the Artin approximation theorem (see theorem 4.4). For

suitable cases, it reveals henselian local rings to contain similar data as their adic

completions.

In chapter 5, we explore properties of the first and second étale cohomology group.

We prove the first étale cohomology group to classiy torsors just as the topological

sheaf cohomology group does. Furthermore, we will point out that étale cohomology

generalizes Galois cohomology. Both types - Galois cohomology as well as cohomology of

quasi-coherent sheaves - reveal good properties indicating the same for étale cohomology.

We apply our so far gained results on the case of curves, i.e. for schemes of finite type

over some seperably closed field k and of dimension less or equal one. As a result, we

may relate the cohomology groups of curves to the cohomology groups of points being

finite or of transcendence degree 1 over k.

Chapter 6 concludes the proof sequence by putting together elements of previous

chapters. The chapter starts with the introduction of a generalized framework for

base changing based on own considerations. Known morphisms, then, are identified

as instances of this generalized framework. At this point, finally, the proper base

change theorem may be phrased. We then sketch an overview of its proof sequence by

referencing to the framework as prepared in previous chapters. This summary together
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with the content of previous chapters will provide thorough understanding for readers

in two directions: Keep track of the proof’s sequence while, simultaneously, allowing to

dive into its individual constituents.

Mastering the proper base change theorem proof represents a tour de force. The

author himself got lost during several attempts. A summary, as developed at a later

stage of the work helped clear the fog and keep the trail along a consistent path without

unnecessary detours. In addition, the general framework for base changing helped to

understand many of the arguments within the proof. At this level of abstraction, the

proper base change proof sequence becomes a clear undertaking. It is my strong hope

that this will be of great help not only to me as author but also to all interested readers.
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1 Sheaves and cohomology

All rings apearing in this thesis are assumed to be commutative and unital.

1.1 Sites

Definition 1.1. Let C be a category. A family of morphisms (with fixed target U)

denoted by

{φi : Ui → U}i∈I

is the data of a set I together with morphisms φi : Ui → U in C for all i in I. A

morphism

{φi : Ui → U}i∈I → {ψj : Vj → V }j∈J

is given by a map of sets a : I → J , morphisms fi : Ui → Va(i) for all i ∈ I and

f : U → V such that

Ui Va(i)

U V

fi

φi ψa(i)

f

commutes. A refinement of {φi : Ui → U}i∈I is given by a morphism

{φi : Ui → U}i∈I → {ψj : Vj → U}j∈J

such that f = idU .

The notion of a site is what we need in order to make the notion of a sheaf on a small

category reasonable.

Definition 1.2 (Site). A site T is a tupel consisting of a small category A, whose

objects are called opens, together with a set Cov(A) of families {φi : Ui → U}i∈I ,
called coverings of A satisfying the following axioms:

1. Given a covering {φi : Ui → U}i∈I all fibre products Ui ×U Uj exist and the

induced family {Ui ×U Uj → Uj}i∈I is also a covering.

2. Given a covering {φi : Ui → U}i∈I and coverings {φij : Uij → Ui}j∈Ji for each

i ∈ I the induced family {φi ◦ φij : Uij → U}i∈I,j∈Ji is a covering.

3. Given an isomorphism U
∼=−→ V in A, then, {U

∼=−→ V } is a covering.

A morphism of sites (A,Cov(A)) → (A′,Cov(A′)) is given by a functor F : A → A′

which preserves all coverings, i.e. given a covering {φi : Ui → U}i∈I in A, then,

{F (φi) : F (Ui)→ F (U)}i∈I
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is a covering in A′, and preserves all fibre products appearing in 1. of the above

definition.

Example 1.3. Let X be a topological space. Denote by Ouv(X) the category of open

subsets of X together with morphisms the canonical inclusions. Define a covering in

Ouv(X) to be a family {Ui ⊂ U}i∈I such that ∪i∈IUi = U . We can check this to define

a site which we also denote by Ouv(X).

Example 1.4. Recall a continuous map X → Y of topological spaces to be a local

homeomorphism if for every x ∈ X there exists an open neighbourhood x ∈ U ⊂ X

such that the restriction f : U → f(U) is an isomorphism of topological spaces.

Let X be a topological space. Denote by Et(X) the full subcategory of topological

spaces over X consisting of local homeomorphisms. By declaring coverings to be jointly

surjective families of morphisms, we obtain a site denoted by Et(X). Every inclusion

of an open subset of X is a local homeomorphism. Thus, the canonical functor

Ouv(X)→ Et(X), U 7→ U

induces a morphism of sites.

1.2 Sheaves on a site

For the rest of this section we denote by T a site and by C a category which has all

limits which appear. As a convention, we will treat T and its underlying category as

the same whenever it is clear from context what we mean.

1.2.1 Definition and examples

Definition 1.5 (Sheaves on a site). A presheaf F ∈ PSh(T, C) satisfies the sheaf con-

dition for a covering {φi : Ui → U}i∈I if the diagram

F(U)
α→

∏
I

F(Ui)
α1

⇒
α2

∏
I2

F(Ui ×U Uj)

is an equalizer diagram where α is induced by the family F(φi), α1 by the first projection

Ui ×U Uj → Ui and α2 by the second projection Ui ×U Uj → Uj . We say F is a sheaf

on T with values in C if it satisfies the sheaf condition for all coverings in T . If C = Ab

we say F is an abelian sheaf. The full subcategory of PSh(A, C) consisting of sheaves

is denoted by Sh(T, C).

Example 1.6. Let X be a topological space. Then, the category of sheaves on Ouv(X)

agrees with the category of sheaves on X defined in the usual way.
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Definition 1.7 (Zariski site). Let X be a scheme. We define the Zariski site denoted

by ZarX to be Ouv(X) of the underlying topological space of X defined in example 1.3.

Example 1.8. Let X be a topological space. Every X-space Y gives rise to a sheaf on

X given by

HomX(−, Y ) : Top /X → Set

restricted to Et(X).

Here is a crucial theorem.

Theorem 1.9. Let X be a topological space. Restricting a sheaf of sets from Et(X) to

Ouv(X) induces an equivalence of categories

Sh(X,Set) ' Sh(Et(X),Set).

Proof. II.6 Corollary 3. in [9].

1.2.2 Čech complex

In ordinary sheaf cohomology, the Čech-to-derived functor spectral sequence is a useful

tool in order to study sheaf cohomology groups. We can extend the notion and results

in Čech-cohomology on topological spaces canonically to sheaves on sites.

Definition 1.10 (Čech complex). Let {Ui → U}i∈I be a family of morphisms in T and

F ∈ PSh(T,Ab) be an abelian presheaf. Assume all appearing fibre products to exist.

We define

Čq({Ui → U}i∈I ,F) =
∏

(i0,...,iq)∈Iq+1

F(Ui0 ×U · · · ×U Uiq) ∈ Ab

and morphisms dq : Čq({Ui → U}i∈I ,F)→ Čq+1({Ui → U}i∈I ,F) induced by

dq((s(i0,...,iq))Iq+1) =

q+1∑
j=0

(−1)js(i0,...,̂ij ,...,iq)|Ui0
×U ···×UUiq

∈ F(Ui0 ×U · · · ×U Uiq)

where the restriction is induced by the projection

Ui0 ×U · · · ×U Uiq → Ui0 ×U · · · ×U Ûij ×U · · · ×U Uiq .

Proving dq+1 ◦ dq = 0 is straightforward. We obtain a complex

Č•({Ui → U}i∈I ,F) = (Č0({Ui → U}i∈I ,F)
d0→ Č1({Ui → U}i∈I ,F)

d1→ · · · )
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called Čech complex. We define

Ȟq({Ui → U}i∈I ,F) = Hq(Č•({Ui → U}i∈I ,F))

to be the q-th Čech cohomology group with respect to {Ui → U}i∈I .

Theorem 1.11. Let T be a site and F an abelian presheaf on T . Then,

1. F is a sheaf iff for every covering {Ui → U}i∈I in T the canonical morphism

F(U)→ Ȟ0({Ui → U}i∈I ,F)

is an isomorphism.

2. the assignement F 7→ Č•({Ui → U}i∈I ,F) extends canonically to an exact functor

PSh(T,Ab)→ Comp+(Ab)

of abelian categories.

3. there exists a quasi-isomorphism

Č•({Ui → U}i∈I ,F)→ RȞ0({Ui → U}i∈I ,F)

functorial in F . In particular, we obtain an isomorphism

Ȟq({Ui → U}i∈I ,−) ∼= RqȞ0({Ui → U}i∈I ,−)

of functors for every q.

Proof. 1. [10, Tag 03AN]

2. [10, Tag 03AQ]

3. [10, Tag 03AU]

Definition 1.12. Let T be a site and U ∈ T . We define the category of coverings of

U denoted by Cov(U) to have objects all covering families of U and morphisms as in

definition 1.1 with canonical composition and identity.

Remark 1.13. Assume T has all fibre products. Then, Cov(U)op is a filtered category.

The assignement {Ui → U}i∈I 7→ Č•({Ui → U}i∈I ,F) extends canonically to a functor

Č•(−,F) : Cov(U)op → Comp+(Ab).

https://stacks.math.columbia.edu/tag/03AN
https://stacks.math.columbia.edu/tag/03AQ
https://stacks.math.columbia.edu/tag/03AU
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We define Č•(U,F) to be its colimit in Comp+(Ab) and Ȟq(U,F) to be its q-th coho-

mology group. Furthermore, we can check the assignement F 7→ Č•(U,F) to extend to

a functor

Č•(U,−) : PSh(T,Ab)→ Comp+(Ab).

Observe Ȟ0(U,−) to be left exact since Cov(U)op is filtered and by 2. of theorem

1.11. We deduce the functorial quasi-isomorphism in 3. of theorem 1.11 to extend to

a functorial quasi-isomorphism Č•(U,F) → RȞ0(U,F) using Cov(U)op to be filtered

and filtered colimits to be exact.

1.2.3 Categorical properties of Sh(T, C)

Assume C is either Set,Ab or Λ Mod with Λ some ring. For simplicity we will not dis-

tinguish between F ∈ Sh(T, C) and its image under the inclusion in PSh(T, C) whenever

it is not necessary.

Remark 1.14. Recall the category of presheaves PSh(T, C) to be locally finitely pre-

sentable and colimits as well as limits to be computed pointwise. In addition, a

strong generator of finitely presentable objects in PSh(T, Set) is given by representable

presheaves. Furthermore, let

Λ[−] : Set→ Λ Mod

be the left adjoint to the forgetful functor. We obtain a left adjoint

PSh(T, Set)→ PSh(T, Λ Mod),F 7→ Λ[−] ◦ F

of the forgetful functor.

Remark 1.15. Let F : A → B be a functor. Recall the following notation. We say F

commutes with κ-filtered colimits if the induced (F (D(i))→ F (A))I is a colimit cocone

for every κ-filtered diagram D : I → A and (D(i)→ A)I a colimit cocone in A. We say

κ-filtered colimits commute with κ-finite limits in A if for all diagrams D : I ×J −→ A
with I κ-filtered and J κ-finite the induced morphism

colim
i∈I

(lim
j∈J

(F (i, j))) −→ lim
j∈J

(colim
i∈I

(F (i, j)))

is an isomorphism whenever both, limit and colimit, exist.

Lemma 1.16. Let F ∈ PSh(T, Set) be a presheaf and {Ui → U}i∈I be a covering in T .

Define

Ȟ0({Ui → U}i∈I ,F) = {(si)i∈I ∈
∏
i∈I
F(Ui)| si|Ui×UUj = sj |Ui×UUj∀i, j ∈ I}.
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This asssignemnt extends to a functor

Ȟ0(−,F) : Cov(U)op → Set, {Ui → U}i∈I 7→ Ȟ0({Ui → U}i∈I ,F)

for every U ∈ T . We define F+(U) to be a colimit of this diagram.

Furthermore, basechanging induces a functor

Cov(V )→ Cov(U), (Vi → V ) 7→ (Vi ×V U → U)

for every U → V in T and, hence, a unique morphism F+(U)→ F+(V ). We obtain a

presheaf F+ ∈ PSh(T, Set) together with a canonical morphism of presheaves F → F+

induced by the family F(U)→ F(Ui).

Proof. [10, Tag 00W4]

Theorem 1.17. The canonical inclusion

Sh(T, C) ⊂ PSh(T, C)

admits an exact left adjoint (−)# = ((−)+)+ called sheafification. Furthermore, let

F ∈ PSh(T, Set) be a presheaf, then, its unit is given by the composition

F → F+ → (F+)+

of the canonical morphisms of the previous lemma. In addition, the canonical morphism

F+ → (F+)+

is injective.

Proof. For the first part for sheaves of sets see [10, Tag 00WH] and [10, Tag 00WJ]

For the second part see [10, Tag 00WB] In general, since (−)# preserves finite limits it

preserves algebraic structures. Therefore, we obtain a unique factorization

PSh(T, C) Sh(T, C)

PSh(T, Set) Sh(T, Set)

forget

(−)#

forget

(−)#

for C = Ab, Λ Mod which is an exact left adjoint to the inclusion Sh(T, C) ⊂ PSh(T, C).

https://stacks.math.columbia.edu/tag/00W4
https://stacks.math.columbia.edu/tag/00WH
https://stacks.math.columbia.edu/tag/00WJ
https://stacks.math.columbia.edu/tag/00WB
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Remark 1.18. Since Sh(T, C) ⊂ PSh(T, C) is reflective, the category of sheaves is

complete and cocomplete by Lemma 2.30 and Lemma 2.31 in [6]. We recall the explicit

constructions of limits resp. colimits of sheaves. Let D : I → Sh(T, C) be a diagram.

Let (F → ιD(i))I be a limit diagram resp. (ιD(i) → F)I be a colimit diagram in

PSh(T, C). Then, the cone

(F# → ιD(i))I

is a limit diagram resp. the cocone

(ιD(i)→ F → F#)I

is a colimit cocone in Sh(T, C) for F# → D(i) the unique extension of F → D(i) along

F → F# and F → F# the unit.

Recall the following result of locally presentable categories.

Lemma 1.19. Let B be a locally κ-presentable category. Assume A ⊂ B to be a

reflective subcategorie and the inclusion to preserve κ-filtered colimits Then, B is locally

κ-presentable and a strong generator of κ-presentable objects is given by the images of

a strong generator under the reflector.

Proof. Lemma 2.32 in [6].

Since the site T is (essentially) small we may find a regular cardinal bounding the

size of all covering families. This will be an upper bound for the local presentability of

Sh(T, C).

Corollary 1.20. Let κ be a regular cardinal such that for all coverings {Ui → U}i∈I
in T the cardinality of I is smaller than κ. Then, the category Sh(T, C) is locally

κ-presentable. In addition, for C = Set, a strong generator is given by the set of

sheafifications of representable presheaves.

Proof. It suffices to prove the inclusion Sh(T, C) ⊂ PSh(T, C) to preserve κ-filtered

colimits by the previous lemma. Let

(Fd → F)D

be a κ-filtered colimit cocone in Sh(T, C) and

(Fd → G)D

be a colimit cocone in PSh(T, C). Then, G# ∼= F are canonically isomorphic by remark

1.18. Therefore, it suffices to prove that G is a sheaf. Let {Ui → U}i∈I be a covering
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in T . By assumption, I is κ-finite. Observe PSh(T, C) to be κ-presentable since it is

finitely presentable. We deduce

equ(
∏
I

G(Ui) ⇒
∏
I2

G(Ui×UUj)) ∼= colimD equ(
∏
I

Fd(Ui) ⇒
∏
I2

Fd(Ui×UUj)) ∼= G(U)

to be canonically isomorphic since κ-filtered colimits commute with κ-finite limits in

PSh(T, C).

Lemma 1.21. Finite limits commute with filtered colimits in Sh(T, C).

Proof. Let F : I × J −→ Sh(T, C) be a diagram with I filtered and J finite. Denote by

ι : Sh(T, C) ⊂ PSh(T, C)

the inclusion. Since PSh(T, C) is locally finitely presentable the induced

colim
i∈I

(lim
j∈J

(ιF (i, j))) −→ lim
j∈J

(colim
i∈I

(ιF (i, j)))

is an isomorphism in PSh(T, C). Then, the induced

colim
i∈I

(lim
j∈J

((−)# ◦ ιF (i, j))) −→ lim
j∈J

(colim
i∈I

((−)# ◦ ιF (i, j))

is an isomorphism in Sh(T, C) since (−)# preserves finite limits. Since the counit of

(−)# a ι is an isomorphism we deduce the claim.

Remark 1.22. There are several different constructions of the sheafification functor.

For example, we could have noticed F ∈ PSh(T, C) to be a sheaf iff the canonical

morphisms

K = coker(tI2hUi×UUj ⇒ tIhUi)→ hU

induce isomorphisms

HomPSh(T,C)(hU ,F)→ HomPSh(T,C)(K,F)

for every covering {Ui → U}i∈I in T . Such subcategories defined by a set of arrows in

a locally presentable category are always reflective by Theorem 3.3 and Remark 3.19 in

[6] However, this approach does not easily implie the exactness of (−)#.

We can in addition prove the following lemma using standard arguments.
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Lemma 1.23. If C = Ab, Λ Mod, then, the abelian category strucure on PSh(T, C)
induces canonically an abelian category structure on Sh(T, C) such that the inclusion

Sh(T, C) ⊂ PSh(T, C) is additive.

Corollary 1.24. If C = Ab, Λ Mod, then, Sh(T, C) is abelian and has enough injective

objects.

Proof. It suffices to prove Sh(T, C) to be abelian, locally presentable and filtered colimits

to commute with finite limits by Lemma 4.11 in [6] using lemma 1.21 and corollary 1.20.

This is lemma 1.23, lemma 1.21 and corollary 1.20.

We ask under which conditions Sh(T, C) is locally finitely presentable.

Definition 1.25. The site T is noetherian if every covering {Ui → U}i∈I admits some

J ⊂ I finite and a refinement of {Ui → U}i∈I by {Uj → U}j∈J .

Lemma 1.26. Assume T to be noetherian. Then, filtered colimits of sheaves in Sh(T, C)
are computed pointwise, i.e. the inclusion

Sh(T, C) ⊂ PSh(T, C)

commutes with filtered colimits.

Proof. Let (F i → F)I be a colimit cocone in Sh(T, C) and (F i → G)I be a colimit cocone

in PSh(T, C). The induced G# → F is an isomorphism by remark 1.18. Therefore, it

suffices to prove that G is a sheaf. We can reduce to proving that G satisfies the sheaf

condition for all finite coverings since we can refine every covering by a finite covering.

We deduce the claim by a similar arguments as in corollary 1.20.

Corollary 1.27. Assume T is noetherian. Then, Sh(T, C) is locally finitely presentable.

If C = Set, the set of sheafifications of representable presheaves is a strong generator of

finitely presentable objects.

Proof. This is essentially remark 1.14, theorem 1.17, lemma 1.19 and the previous

lemma.

1.3 Cohomology of sheaves

We assume in addition C = Ab, Λ Mod for some ring Λ for the rest of this section.

Denote by ι : Sh(T, C) ⊂ PSh(T, C) the canonical inclusion.

Definition 1.28. Let U be in T . Denote by

ΓP(U, -) : PSh(T, C) −→ C,F 7→ F(U), f 7→ F(f)
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the functor evaluating a presheaf at U and by

Γ(U, -) = ΓP(U, -) ◦ι : Sh(T, C) −→ C

its restriction to Sh(T, C). Then, Γ(U, -) is left exact since ΓP(U, -) is exact and ι is

a right adjoint by theorem 1.17. Therefore, the right derived functor of Γ(U, -) exists

since Sh(T, C) has enough injective objects by corollary 1.24. Let F ∈ Sh(T, C) be a

sheaf. We define the p-th sheaf cohomology group of U with values in F

Hp(U,F) = Rp Γ(U, -)(F) = Hp(RΓ(U, -)(F))

to be the the p-th right-derived functor of Γ(U, -) for every p ≥ 0.

Definition 1.29. Let f : T→ T′ be a morphism of sites. By abstract reasons, namely

by the existence of a left and right kan-extension, the functor

fP∗ : PSh(T′, C)→ PSh(T, C),F 7→ (U 7→ F(f(U)))

has a right and a left adjoint. We denote its left adjoint by f∗P . Then, fP∗ restricts to a

functor

f∗ : Sh(T′,Set)→ Sh(T, Set),F 7→ (U 7→ F(f(U)))

since f preserves coverings. Sheafifying f∗P , we obtain a left adjoint f∗ of f∗ given by

(−)# ◦ f∗P : Sh(T, Set)→ Sh(T′,Set),F 7→ (U 7→ colim
V ∈f/U

F(V ))#.

We observe f/U to be cofiltered if T has fibre products and f preserves them. In that

case f∗ is exact.

Remark 1.30. Let f : T → T′ be a morphism of sites. By the very construction of

the inverse and direct image we observe the unit ε : 1⇒ f∗f
∗ to be pointwise given by

εF (U) : F(U)→ colim
f/f(U)

F(V ) = fP∗ f
∗
P F(U)→ f∗F(f(U))

where the first map is the colimit cocone morphism corresponding to idf(U) and the

second morphism is induced by the unit f∗P F → (f∗P F)# = f∗F .

Example 1.31. Let ∗ denote the category with a single object pt and the identity. Let

X ∈ T be an object in T . Then, ∗ is canonical a site and

i : ∗ → T, pt 7→ X
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is a morphism of sites. We obtain a (up to natural isomorphism) commutative diagram

Sh(T, C) Sh(∗, C)

C

Γ(X,-)

i∗

Γ(pt,-)

.

We can check that Γ(pt, -) is an equivalence. In particular, Rqi∗ computes sheaf coho-

mology of X and Γ(X, -) admits a left-adjoint.

Lemma 1.32. Let L : A → B be a left adjoint and A,B be abelian categories. If L is

exact, then, its right adjoint R preserves injective objects.

Proof. Let I ∈ B be an injective object. Then,

Hom(−, R(I)) ∼= Hom(L(−), I)

is exact since it is a composition of exact functors.

Corollary 1.33. The inclusion ι : Sh(T, C) ⊂ PSh(T, C) preserves injective objects.

Furthermore, given some morphism of sites f : T → T ′, the functor

f∗ : Sh(T, C)→ Sh(T ′, C)

preserves injective objects if T has fibre products and f preserves them.

Proof. It suffices to prove their respective left adjoints to be exact by the previous

lemma. For ι this is theorem 1.17. For f∗ this was observed in definition 1.29.

Lemma 1.34. Let f : T → T ′ be a morphism of sites. Then, the q-th right derived

functor Rqf∗F of f∗ is natural isomorphic to the sheafification of the presheaf

U 7→ Hq(f(U),F).

Proof. Let 0 → F → I• be an injective resolution of F . Then, Rqf∗F ∼= Hq(f∗I
•)

are isomorphic. Thus, we deduce an isomorphism Hq(f∗I
•) ∼= (U 7→ Hq(f∗I

•(U)))# by

remark 1.18. At last, we observe

Hq(f∗I
•(U)) = Hq(I•(f(U))) ∼= Hq(f(U),F)

to be isomorphic. Combined we deduce the claim.
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1.4 Calculation of sheaf cohomology

1.4.1 Comparison spectral sequences

Remark 1.35. Let F : A → B be a left exact functor of abelian categories and

0→ A→ A0 → A1 → · · ·

be a left-bounded complex of objects in A. Assume its right derived functor

RF : D+A → D+ B

to exist. We say

0→ A→ A0 → A1 → · · ·

computes RF if the induced

RF (A)→ (FA0 → FA1 → · · · )

is an isomorphism in D+ B.

Let us recall the notion of an adapted class and its relation to derived functors.

Remark 1.36. Let F : A → B be a left exact functor of abelian category. Recall a

class of objects R in A to be adapted to F if

1. R is stable under taking finite direct sums.

2. F maps acyclic complexes of objects in R to acyclic complexes.

3. Any object in A is a subobject of an object in R.

If R is adapted to F , then, for every quasi-isomorphism K• → A• in Comp+(A) with

every object of A• in R the induced RF (K•) → FA• is an isomorphism using III.6.8

Theorem in [8].

Remark 1.37. Let {Ui → U} be a covering in T . The following diagrams

Sh(T, C) C Sh(T, C) C Sh(T, C) C

PSh(T, C) PSh(T, C) PSh(T, C)

Γ(U,-)

ι

Γ(U,-)

ι

Γ(U,-)

ι
ΓP(U,-) Ȟ0({Ui→U},−) Ȟ0(U,−)

commute up to isomorphism by definition. Notice that we implicitely assumed C = Ab

whenever we use Čech cohomology.
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Using the theory of spectral sequences, in particular Grothendieck’s spectral sequence,

we can compare sheaf cohomology to other derived functors.

Theorem 1.38. Let {Ui → U}i∈I be a covering in T and F ∈ Sh(T, C). There exist

converging spectral sequences

Epq2 = Hp({Ui → U},−)(Rqι(F))⇒ Ep+q = Hp+q(U,F)

Epq2 = Ȟp(U,−)(Rqι(F))⇒ Ep+q = Hp+q(U,F)

Epq2 = Rp ΓP(U, -)(Rqι(F))⇒ Ep+q = Hp+q(U,F)

which are functorial in F .

Proof. Recall the abelian categories Sh(T, C) and PSh(T, C) to have enough injective

objects and ι to preserve injective objects and injective objects to form an adapted class

to any left exact functor. Therefore, we can apply Grothendieck’s spectral sequence to

all three compositions in the previous remark in order to calculate Hp(U,F).

Proposition 1.39. Let U be an element of T and F ∈ Sh(T,Ab) be a sheaf. Then,

Rpι(F)(U) ∼= Hp(U,F)

are natural isomorphic.

Proof. The right derived functor of ΓP(U, -) is given by pointwise application of ΓP(U, -)

since ΓP(U, -) is exact. Furthermore, ι preserves injective objects by corollary 1.33.

Thus, the canonical morphism

RΓ(U, -) = R(ΓP(U, -) ◦ι)→ ΓP(U, -) ◦Rι

is an isomorphism. This proves the claim.

Lemma 1.40. Let {Ui → U}i∈I be a covering in T and F ∈ Sh(T, C) be a sheaf such

that

Čp(Ui0 ×
U
· · · ×

U
Uir ,F) ∼= 0

is zero for all 0 < p, 0 ≤ r and (i0, ..., ir) ∈ Ir+1. Then, the edge morphism

Čp({Ui → U},F) −→ Hp(U,F)

is an isomorphism for all p.
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Proof. The cohomology groups

Hp({Ui → U}, Rqι(F))

are calculated by taking homology of the cochain complex Čp({Ui → U}, Rqι(F)) by

theorem 1.11. We obtain a natural sequence of isomorphisms

Čp({Ui → U}, Rqι(F)) =
∏

(i0,...,ir)∈Ir+1

Rqι(F)(Ui0 ×
U
· · · ×

U
Uir) by definition

∼=
∏

(i0,...,ir)∈Ir+1

Hq(Ui0 ×
U
· · · ×

U
Uir ,F) by the above lemma

= 0 for 0 < p.

Applied to the spectral sequence

Epq2 = Čp({Ui → U},−)(Rqι(F))⇒ Ep+q = Hp+q(U,F)

we conclude the claim.

Lemma 1.41. Assume there exists a converging N× N-indexed spectral sequence

Epq2 ⇒ Ep+q

and an n ∈ N such that Epq2 = 0 for all 0 < q < n. Then, the edge morphism

Ep02 → Ep

is an isomorphism for all p < n and a monomorphism for p = n.

Proof. We observe Epqr = Epq2 = 0 for all r and 0 < q < n since Epq2 = 0 for all 0 < q < n.

We deduce Ep02 = Ep0∞ for all p ≤ n since the differentials dpqr have degree (r, 1− r). We

have 0 = Ep,m−p∞
∼= grp(E

m) for all m < n, p 6= m and for m = n, p 6= 0. Since the

spectral sequence is converging, we deduce the desired.

Corollary 1.42. Let F ∈ Sh(T, C) and U ∈ T . Assume

Ȟp(U,Rqι(F)) ∼= 0

is zero for all 0 < q < n. Then, the edge morphism

Ȟp(U,F) −→ Hp(U,F)
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is an isomorphism for all p < n and a monomorphism for p = n.

Proof. We apply the previous lemma to the spectral sequence

Epq2 = Ȟp(U,−)(Rqι(F))⇒ Ep+q = Hp+q(U,F)

to obtain the claim.

Proposition 1.43. Let F be an object of Sh(T, C). Then,

Ȟ0(U,Rqι(F)) ∼= 0

is zero for all U ∈ T , 0 < q.

Proof. The induced morphism Ȟ0(U,Rqι(F)) −→ Rqι(F)#(U) is a monomorphism by

theorem 1.17. Hence, it suffices to prove Rqι(F)# ∼= 0 for all U ∈ T , 0 < q. We apply

Grothendieck’s spectral sequence to the composition (−)# ◦ ι ∼= idSh(T,C) to obtain a

converging spectral sequence

Epq2 = Rp(−)#(Rqι(F))⇒ Ep+q = Rp+qidSh(T,C)(F).

Then, the edge morphism

(Rqι(F))# −→ RqidSh(T,C)(F)

is an isomorphism since (−)# is exact. Furthermore, (Rqι(F))# ∼= RqidSh(T,C)(F) ∼= 0

is zero for all 0 < q since idSh(T,C) is exact. We deduce Rqι(F)# ∼= 0 for all U ∈ T ,

0 < q and, hence, the claim.

Corollary 1.44. Let F ∈ Sh(T, C) be a sheaf. Then, the edge morphism

Ȟp(U, ιF) −→ Hp(U,F)

is an isomorphism for p = 0, 1 and a monomorphism for p = 2.

1.4.2 Flasque sheaves

Given some morphism of sites f : T → T ′ we would like to get a comparing spectral

sequence of the sheaf cohomology groups of F and of f∗F . We would like to apply

Grothendieck’s spectral sequence. To do so, we need to prove that f∗ turns injective

sheaves into Γ(U,−)-acyclic objects.
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In this section, the distinction between a sheaf and its underlying presheaf becomes

relevant. Therefore, we do not omit the inclusion ι : Sh(T, C) ⊂ PSh(T, C) in this

section.

Definition 1.45. A sheaf F ∈ Sh(T, C) is called flasque if Hp({Ui → U}, ιF) = 0 for

all 0 < q and all coverings {Ui → U}i∈I .

Example 1.46. Let I ∈ Sh(T, C) be an injective sheaf. Then, ιI ∈ PSh(T, C) is an

injective sheaf. In particular,

Hp({Ui → U}, ιF) ∼= Rq H0({Ui → U}, ιF) ∼= 0

is zero for all q > 0 since injective objects form an adapted class to every left exact

functor and remark 1.36.

Let us recall a useful lemma.

Lemma 1.47. Let F : A → B be a left exact functor of abelian categories. Assume A
has enough injective objects. Let S be a class of objects in A satisfying the following.

1. For all A ∈ A there exists a monomorphism A→ C with C ∈ S.

2. Given A,B in A such that its direct sum A⊕B is also in A, then, both A and B

are in S.

3. Given some short exact sequence

0→ A→ B → C → 0

in A and objects A,B ∈ S, then, the induced sequence

0→ F (A)→ F (B)→ F (C)→ 0

is exact and C is in S.

Then, S is adapted to F . In particular, resolutions of objects in S can be used to

calculate RF . Furthermore, every injective object of A is in S.

Proof. We only a sketch a proof. We check the conditions in remark 1.36. 1. and

3. in remark 1.36 hold trivial. Because A has enough injective objectets, RF exists.

Let K• be bounded below acyclic complex of objects in S. Inductively we can prove

that K• splits into a family of short exact sequences of objects in S using that S is

stable under quotients. Then, we can derive that F preserves exact bounded below
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complexes of objects in S using 3. This proves 2. of remark 1.36. At last, we can

embed every injective sheaf into some object in S by 1. Thus, every injective sheaf is a

split subobject of an object in S. We derive every injective object to be in S by 2.

Let us now check that the class of flasque sheaves satisfies all assumptions in lemma

1.47 for F = ι.

Lemma 1.48. Let

0 −→ F ′ −→ F −→ F ′′ −→ 0

be an exact sequence in Sh(T, C). If F ′ is flasque, then,

0 −→ ιF ′ −→ ιF −→ ιF ′′ −→ 0

is exact in PSh(T, C).

Proof. We need to prove

0 −→ ιF ′(U) −→ ιF (U) −→ ιF ′′(U) −→ 0

to be exact for all U ∈ T . We deduce Ȟ1(U, ιF) ∼= 0 to be zero since

Ȟp({Ui → U}, ιF) ∼= 0

is zero for all 0 < q and all coverings {Ui → U}i∈I . Then,

0 ∼= Ȟ1(U, ιF) ∼= H1(U,F)

is zero by lemma 1.44. We deduce the claim by the long exact sequence in cohomology.

Lemma 1.49. Let

0 −→ F ′ −→ F −→ F ′′ −→ 0

be an exact sequence in Sh(T, C). If F ′ and F are flasque, then, F ′′ is flasque.

Proof. By lemma 1.48,

0 −→ ιF ′ −→ ιF −→ ιF ′′ −→ 0

is exact in PSh(T, C). We obtain a long exact sequence of cohomology groups

0→ · · · → Ȟp({Ui → U}, ιF ′)→ Ȟp({Ui → U}, ιF )→ Ȟp({Ui → U}, ιF ′′)→ · · ·
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since Ȟp({Ui → U}, ιF) ∼= RpȞ0({Ui → U}, ιF) are isomorphic. Using

Ȟp({Ui → U}ιF ′′) and Ȟp({Ui → U}, ιF) = 0

are zero for all p > 0 we deduce the claim.

Corollary 1.50. The class of flasque sheaves is adapted to ι, Ȟ0({Ui → U},−) and

Γ(U, -). In particular, flasque resolutions compute Ȟp({Ui → U},−), Rpι and Hp(U,−).

Proof. It suffices to check the conditions in lemma 1.47. Since Sh(T, C) has enough

injective sheaves and injective sheaves are flasque by example 1.46, we deduce 1. Fur-

thermore,

Ȟp({Ui → U}, ι(−)) = Hp(Č•({Ui → U}, ι(−)))

commutes with finite direct sums since ι is left exact. In particular, 2. holds. Observe

if 3. holds for ι, then, 3. holds for H0({Ui → U},−) and Γ(U, -). At last, 3. for ι is

essentially lemma 1.49 and lemma 1.48.

1.4.3 Leray spectral sequence

In the following, let f : T −→ T ′ and g : T ′ −→ T ′′ be morphisms of sites.

Lemma 1.51. If F ′ ∈ Sh(T ′, C) is flasque, then, f∗F ′ ∈ Sh(T, C) is flasque.

Proof. We need to prove Ȟp({Ui → U}, f∗F ′) ∼= 0 to be zero for all 0 < p and all

coverings {Ui → U}I in T . We obtain a natural isomorphism

Čp({Ui → U}, f∗F ′) =
∏

(i0,...,ip)∈Ip+1

f∗F ′(Ui0 ×
U
· · · ×

U
Uip)

∼=
∏

(i0,...,ip)∈Ip+1

F ′(f(Ui0) ×
f(U)
· · · ×

f(U)
f(Uip)) by definition

= Čp({f(Ui)→ f(U)},F ′).

Hence,

Ȟp({Ui → U}, f∗F ′) ∼= Ȟp({f(Ui)→ f(U)},F ′) ∼= 0

is zero for all 0 < p since F ′ is flasque.

Lemma 1.52. The class of flasque sheaves is adapted to f∗ : Sh(T ′, C)→ Sh(T, C).

Proof. We check the conditions in lemma 1.47. Let

0→ F ′ → F → F ′′ → 0
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be an exact sequence in Sh(T ′, C) with F ,F ′ flasque. In order to prove f∗ to preserve

this exact sequence, it suffices to prove

0→ ιf∗F ′ → ιf∗F → ιf∗F ′′ → 0

to be exact in PSh(T, C). We easily deduce this from lemma 1.48. We already proved

the rest of lemma 1.47 in the proof of corollary 1.50.

Theorem 1.53 (Leray spectral sequence). Let F ′′ ∈ Sh(T ′′, C) be a sheaf. There exists

a converging spectral sequence

Epq2 = Rpf∗(R
qg∗(F ′′))⇒ Rp+q(f∗ ◦ g∗)(F ′′) = Ep+q

functorial in F ′′.

Proof. We may apply Grothendieck’s spectral sequence to f∗◦g∗ by the previous lemma

and by lemma 1.51. This is precisely the claim.

Corollary 1.54. Let F ′ ∈ Sh(T ′, C) be a sheaf and U and object in T . There exists a

converging spectral sequence

Epq2 = Hp(U,Rqg∗(F ′))⇒ Hp+q(g(U),F ′) = Ep+q

functorial in F ′.

Proof. This is theorem 1.53 applied to f : ∗ → T ′, pt 7→ U of example 1.31.

1.4.4 Compatibility with filtered colimits

A strong technic for deriving results in locally finitely presentable categories is to prove

results for finitely presentable objects and then use every object to be a filtered colimit

of such objects. To do so, we need to prove the result in question to be compatible with

filtered colimits in a suitable sense.

Lemma 1.55. Assume T is noetherian. Let {Ui → U}j∈J be a covering in T . The

functor Ȟq({Ui → U}j∈J ,−) commutes with filtered colimits for all q.

Proof. We may assume J to be finite. Let (F i → F)I be a filtered colimit cocone in

Sh(T, C). Recall the inclusion

ι : Sh(T, C) ⊂ PSh(T, C)
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to preserve filtered colimits since T is noetherian. We deduce the induced morphism

colimI Ȟ
q({Ui → U}j∈J , ιF i)→ Ȟq({Ui → U}j∈J , ιF)

to be an isomorphism since filtered colimits are exact in C.

Corollary 1.56. Let T be noetherian and (F i → F)I be a filtered colimit cocone in

Sh(T, C) with each F i flasque. Then, F is flasque.

Theorem 1.57. Assume T is noetherian. Let F (−) : I → Sh(T, C) be a filtered

diagram and (F i → F)I be a filtered colimit cocone in Sh(T, C). Then, the induced

colimI Hq(U,F i)→ Hq(U,F)

is an isomorphism for all q. We say sheaf cohomology commutes with filtered colimits.

Proof. The category Sh(T, C) is locally finitely presentable (and abelian) by corollary

1.27. Thus, the category Fun(I, Sh(T, C)) is locally finitely presentable and abelian.

In particular, Fun(I, Sh(T, C)) has enough injective objects by Lemma 4.11 in [6]. For

every i ∈ I define a functor

ĩ : ∗ → I, pt 7→ i.

We obtain a functor

ĩ∗ : Fun(I, Sh(T, C))→ Fun(∗,Sh(T, C)),G 7→ (pt 7→ G(i)).

Observe its left adjoint, given by the left Kan-extension of ĩ, to be exact since I is fil-

tered. In particular, ĩ∗ preserves injective objects by lemma 1.32. We deduce evaluating

at some i to preserve injective objects by identifying

Fun(∗, Sh(T, C)) ' Sh(T, C), F 7→ F (pt).

Let

0→ F (−) → I0 → I1 → · · ·

be an injective resolution in Fun(I, Sh(T, C)). Then, the complex

0→ F i → I0(i)→ I1(i)→ · · ·

is an injective resolution in Sh(T, C) for every i and computes sheaf cohomology of F i.
We deduce the complex

0→ colimI F i → colimI I0(i)→ colimI I1(i)→ · · ·
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to be a flasque resolution of F by corollary 1.56 and, therefore, computes sheaf coho-

mology by corollary 1.50. At last, each colimit is computed pointwise by lemma 1.26.

Combined, the diagrams induced by the colimit cocone morphisms Ij(i)→ colimI Ij(i)
induce isomorphisms

colimI Hq(U,F i)→ Hq(U,F)

for every q.
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2 Étale Cohomology

2.1 Étale morphisms

We will very briefly introduce étale morphisms. Those will be an algebraic analogue

of a local isomorphism in complex analytic topology. Let us give the probably most

intuitive definition of an étale morphism of schemes.

Definition 2.1. A morphism of schemes f : X → S is étale if it is locally of finite

presentation and for every x ∈ X there exist Spec(A) = V ⊂ S and x ∈ Spec(B) =

U ⊂ X affine opens such that f(U) ⊂ V and the induced morphism of rings A → B

exhibits

B ∼= A[t1, ..., tn]/(f1, ..., fn)

to be isomorphic as A-algebras for some n ∈ N with det((∂fi/∂tj)i,j) ∈ B invertible in

Bx. We say f is étale at x ∈ X if there exist opens V ⊂ S and x ∈ U ⊂ X such that

f(U) ⊂ V and the induced f : U → V is étale.

A morphism of rings A→ B is standard étale if

B ∼= A[t]g/(h)

are isomorphic as A-algebras with h being monic and its derivative ∂h/∂t = h′ being

invertible in B.

There are many equivalent characterizations of étale morphisms which are more fa-

miliar to work with. See for instance [10, Tag 02GU]. We only collect the results needed,

as there are many well-prepared sources on this topic. See for instance [5] or [10, Tag

02GH].

Proposition 2.2. Here is a collection of practical results on the étale morphisms of

schemes.

1. The composition of étale morphisms of schemes is étale.

2. The base change of an étale morphism of schemes remains étale.

3. Étale morphisms are locally quasi-finite

4. Let X be a k-scheme for k a field. Then, X is an étale k-scheme iff X is a finite

disjoint union of spectra of finite separable field extensions of k.

5. An étale morphism is flat.

6. An étale morphism of schemes is open.

https://stacks.math.columbia.edu/tag/02GU
https://stacks.math.columbia.edu/tag/02GH
https://stacks.math.columbia.edu/tag/02GH
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7. Let f : X → S be a morphism of schemes and x ∈ X. Let V ⊂ S be an affine

open neighbourhood of f(x). Then, f is étale at x iff there exists an affine open

x ∈ U ⊂ X and f(U) ⊂ V such that the induced morphism f : U → V is standard

étale.

8. Let f : X → Y be a morphism of étale S-schemes. Then, f is étale.

9. A standard étale map of rings is étale.

Proof. 1. [10, Tag 02GN]

2. [10, Tag 02GO]

3. [10, Tag 02WS]

4. [10, Tag 02GL]

5. [10, Tag 02GS]

6. [10, Tag 03WT]

7. [10, Tag 02GT]

8. [10, Tag 02GW]

9. Implicitely in (9) of [10, Tag 02GU]

Example 2.3. Let X be a scheme.

1. Every open immersion U ⊂ X is étale by [10, Tag 02GP].

2. Let X = Spec(A) be an affine scheme for some ring A and f ∈ A[t] be monic with

f ′ and f jointly generating A[t]. Then, the canonical A → A[t]/(f) is standard

étale, hence, étale.

2.2 The étale site and étale sheaves

Throughout the rest of this section let S be a scheme and C = Set,Ab, Λ Mod for Λ

some commutative ring.

Lemma 2.4 (Étale site). Define EtS ⊂ Sch /S to be the full subcategory of étale S-

schemes. Then, EtS has all fibre products, computed in Sch /S. Defining coverings in

EtS to be the families

{φi : Ui → U}i∈I

https://stacks.math.columbia.edu/tag/02GN
https://stacks.math.columbia.edu/tag/02GO
https://stacks.math.columbia.edu/tag/02WS
https://stacks.math.columbia.edu/tag/02GL
https://stacks.math.columbia.edu/tag/02GS
https://stacks.math.columbia.edu/tag/03WT
https://stacks.math.columbia.edu/tag/02GT
https://stacks.math.columbia.edu/tag/02GW
https://stacks.math.columbia.edu/tag/02GU
https://stacks.math.columbia.edu/tag/02GP
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of S-morphisms with

∪i∈Iφi(Ui) = U

as sets defines a site which we also denote by EtS.

Proof. By 1. and 2. of proposition 2.2 we deduce EtS has all fibre products, computed

in Sch /S. Recall the base change of a morphism of schemes surjective at the level

of topological spaces remains surjective at the level of topological spaces. Combined,

this proves 1. of definition 1.2. 2. and 3. of definition 1.2 hold trivially by using the

composition of étale morphisms remains étale by 1. of proposition 2.2.

Definition 2.5 (Étale and Zariski cohomology). Let S be a scheme and F ∈ Sh(EtS, C)
for C = Ab, Λ Mod. We define the p-th étale cohomology group with values in F denoted

by

Hp
et(S,F) = Rp Γ(S, -)(F)

to be the p-th right derived functor of global sections.

Let G be a sheaf on ZarS . Denote by Γ(S, -)Zar the global section functor on Zariski

sheaves. We define

Hp
Zar(S,G) = Rp Γ(S, -)Zar(F)

to be the p-th Zariski cohomology group with values in G. Observe this agrees with

the classical Zariski cohomology group since sheaf cohomology on Ouv(X) and classical

sheaf cohomology on a topological space X agree.

2.3 Examples of étale sheaves

We have a canonical inclusion ZarX ⊂ EtX for every scheme X by example 2.3. There-

fore, every étale sheaf is in particular a Zariski sheaf. However, being an étale sheaf is

in general a stronger condition.

Lemma 2.6. Let X be a scheme and F ∈ PSh(EtX , C). Then, F is an étale sheaf iff

it satisfies the sheaf condition for

1. coverings in ZarX ⊂ EtX .

2. coverings given by a single étale morphism of affine schemes surjective at the level

of topological spaces.

Proof. 3.1.1 Lemma in [11].

Let us recall a fundamental insight due to Grothendieck.
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Definition 2.7. An fpqc (fidèlement plat et quasi-compact) morphism of schemes is a

morphism of schemes X → S which is faithfully flat and quasi-compact.

Lemma 2.8. Let f : X → X ′ be a fpqc morphism of S-schemes. Given another

S-scheme Y , the induced diagram

HomSch/S(X ′, S)→ HomSch/S(X ′, S) ⇒ HomSch/S(X ′ ×X X ′, S)

is an equalizer diagram. In other words, the canonical diagram

X ′ ×X X ′ ⇒ X ′ → X

is a coequalizer diagram of S-schemes.

Proof. [10, Tag 03O3]

Corollary 2.9. Let X be an S-scheme. Then, the restriction of the presheaf HomS(−, X)

to EtS is an étale sheaf. In particular, every representable presheaf in PSh(EtX , Set) is

a sheaf and the Yoneda embedding factorizes as

EtX ⊂ Sh(EtX , Set) ⊂ PSh(EtX ,Set)

Proof. By the previous lemma, it suffice to proof the sheaf condition of HomS(−, X)

only for 1. Zariski coverings and 2. coverings given by a single étale morphism of affine

schemes surjective at the level of topological spaces. Part 1. is well known. Part 2.

follows by lemma 2.8.

Example 2.10. Let S be a scheme. We have seen the functor Γ(S, -) to admit a right

adjoint in example 1.31. The left adjoint of Γ(S, -) maps a set resp. Λ-module M

to the sheafification (U 7→ M)# of the constant presheaf induced by M by the very

construction. We denote this sheaf by M : EtS → Set resp. M : EtS → Λ Mod.

Example 2.11. Let X be a scheme.

1. (additive group sheaf) The presheaf U 7→ OU (U) denoted by Ga is respresented

by Spec
X

(OX [t]) and, therefore, is an étale X-sheaf.

2. (multiplicative group sheaf) The presheaf U 7→ OU (U)× of abelian groups denoted

by Gm is respresented by Spec
X

(OX [t, t−1]) and, therefore, is an étale X-sheaf.

3. (n-th roots of unity sheaf) The presheaf U 7→ {u ∈ OU (U)|un = 1} of abelian

groups denoted by µn,X is respresented by Spec
X

(OX [t]/(tn − 1)) and, therefore,

is an étale X-sheaf.

https://stacks.math.columbia.edu/tag/03O3
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4. (constant sheaf) Given a set M , the associated constant étale X-sheaf M =

(U 7→ M)# is isomorphic to U 7→ HomS(U,tMX) for the (not necessarily étale)

tMX → X.

2.4 Direct and inverse image functor

Remark 2.12. Let f : X → S be a morphism of schemes. Recall étale morphisms to

be stable under base change. Thus,

EtS → EtX , U 7→ U ×S X

is a functor. We convince ourselves that this functor preserves coverings. Therefore,

EtS → EtX , U 7→ U ×S X

defines a morphism of sites.

Definition 2.13. Let f : X → S be a morphism of schemes. We call

f∗ : Sh(EtX, C)→ Sh(EtS, C),F 7→ (U 7→ F(U ×S X))

associated to −×S X the direct image of f and its left adjoint

f∗ : Sh(EtS, C)→ Sh(EtX, C)

the inverse image of f .

Example 2.14. If f : U → S is étale, the associated inverse image f∗ is given by

restricting a sheaf on EtS to EtU along f . In this case, the counit of the adjunction

f∗ a f∗ is an isomorphism.

Lemma 2.15. Let f : X → S be a morphism of schemes and U an étale S-scheme.

Then,

f∗(hU ) ∼= hU×YX

are canonically isomorphic. Furthermore, along this isomorphism, the unit 1 ⇒ f∗f
∗

exhibits pointwise as

−×S X : HomS(V,U)→ HomX(V ×S X,U ×S X).

Proof. We obtain natrual isomorphisms

HomSh(EtX,Set)(f
∗(hU ),−) ∼= HomSh(EtS,Set)(hU , f∗(−)) ∼= HomSh(EtX,Set)(hU×SX ,−)
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by adjunction of f∗ a f∗. By Yoneda’s Lemma, f∗(hU ) ∼= hU×YX are isomorphic. By

the formula of the unit in remark 1.30, we deduce the second claim.

Corollary 2.16. Let f : X → S be a morphism of schemes and M be a finite set (resp.

finite abelian group). Then,

f∗M ∼= M

are canonically isomorphic.

Proof. Recall the constant sheaf M ∈ Sh(EtX,Set) (resp. M ∈ Sh(EtX,Ab)) to be

represented by tMX → X by example 2.11. If M is finite, tMX → X is étale. We

deduce the claim by the previous lemma.

Similar to ordinary sheaf cohomology, we can define a comparison morphism of co-

homology groups for given f : X → Y a morphism of schemes. We will see in example

6.13 that this construction is a special case of the base change map defined in the last

chapter.

Construction 2.17. Let f : X → Y be a morphism of schemes and F an abelian

sheaf on EtY . Choose an injective resolution F → I•. Choose a quasi-isomorphism

f∗ I• → J• to an injective complex. Because f∗ is exact, f∗F → J• is an injective

resolution. Let ε be the unit of the adjunction f∗ a f∗. We obtain a morphism of

complexes

I•(Y )→ f∗f
∗ I•(Y ) ∼= f∗ I•(X)→ J•(X)

and, therefore, a morphism of cohomology groups

Hq
et(Y,F)→ Hq

et(X, f
∗F).

Combined with the functoriality of Hq
et(X,−), given a morphism of sheaves α : f∗F →

G, we obtain a morphism

Hq
et(Y,F)→ Hq

et(X,G).

Observe this map to be given by the adjoint F → f∗ G of α on q = 0.

Remark 2.18. Recall the first étale cohomology group and the first Čech cohomology

group to be isomorphic by corollary 1.44. Along this isomorphism, the base change

H1
et(Y,−)→ H1

et(X, f
∗(−))

induces a morphism

Ȟ1(Y,−)→ Ȟ1(X, f∗(−))
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of functors on sheaves. We would expect this morphism to be induced by

Č•({Ui → Y }, µF ) : Č•({Ui → Y },F)→ Č•({Ui → Y }, f∗f∗ F) = Č•({Ui ×S X → X}, f∗ F)

for µ : 1 ⇒ f∗f
∗ the unit of the adjunction f∗ a f∗. We will proof this to be true in

corollary 6.14.

2.5 Categorical properties

Definition 2.19. Let X be a scheme. Define

EtfpX ⊂ EtX

to be the full subcategory of finitely presented and étale morphisms. Being of finite

presentation is stable under base change and composition. Therefore, EtfpX has fibre

products computed in EtX . We equip EtfpX with the unique structure of a site by

declaring a family to be a covering iff it is a covering in EtX . In particular, the inclusion

EtfpX ⊂ EtX is a morphism of sites.

Lemma 2.20. Assume S to be quasi-compact. Then, EtfpS is noetherian.

Proof. Let

{φi : Ui → U}i∈I

be a covering in EtfpS . We need to prove that there exists some J ⊂ I finite such that

{φi : Ui → U}i∈J

is a covering. Every étale Ui → U is in particular open. Since U is a quasi-compact

S-scheme and S is quasi-compact, U is quasi-compact. Thus, there exists a finite

subcovering

{φi(Ui) ⊂ U}i∈I

of the open topological covering

{φi(Ui) ⊂ U}i∈I .

Then,

{φi : Ui → U}i∈J

is a finite subcovering.
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Lemma 2.21. Assume X to be quasi-separated. Then, the inclusion EtfpX ⊂ EtX

induces an equivalence

Sh(EtX , C) ' Sh(EtfpX , C).

Proof. It suffices to prove that every U → X étale admits a covering by schemes étale

and of finite presentation over X. Then, we can deduce every sheaf as well as every

morphism of sheaves to be fully determined by its restriction to EtfpX by using the

sheaf property. For every u ∈ U there exists an affine open neighbourhood u ∈ Uu ⊂
U and an affine open Vu ⊂ X such that Uu → X factorizes through Vu ⊂ X and

Uu → Vu is of finite presentation. We claim the étale map Uu → X to be of finite

presentation. It suffices to prove Vu ⊂ X to be of finite presentation, i.e. to prove the

inclusion to be quasi-compact since open immersios are locally of finite presentation

and quasi-separated. Given some V ⊂ X open and quasi-compact, we may cover V by

finitely many affine opens and assume V to be affine. Because X is quasi-separated,

the preimage of V in Vu, which is V ∩Vu, may be covered by finitely many affine opens

and is, therefore, quasi-compact. We deduce the claim.

Corollary 2.22. Assume X to be quasi-compact and quasi-separated. Then, Sh(EtX , C)
is locally finitely presentable and filtered colimits are computed pointwise for every U ∈
EtfpX . Furthermore, a strong generator of finitely presentable objects in Sh(EtX,Set) is

given by EtfpX ⊂ Sh(EtX,Set).

Proof. Combining the previous two lemmata, we obtain that the restriction induces an

equivalence

Sh(EtX, C) ' Sh(EtfpX , C)

and EtfpX is a noetherian site. In particular, Sh(EtfpX , C) to be locally finitely presentable

and a strong generator of finitely presentable objects is given by

EtfpX ⊂ Sh(EtfpX , Set)

by corollary 1.27. At last, filtered colimits in Sh(EtfpX ,Set) are computed pointwise by

lemma 1.26.

Lemma 2.23. The Yoneda embedding preserves finite coproducts.

Proof. Let U1, ..., Un be étale X-schemes. Then, the induced tni=1Ui → X is étale and

the induced family {Uj → tni=1Ui}j=1,...,n is an étale covering. We need to prove the

induced morphism

HomSh(EtX ,C)(htni=1Ui ,F)→
n∏
i=1

HomSh(EtX ,C)(hUi ,F)
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to be an isomorphism for every F ∈ Sh(EtX ,Set). By Yoneda’s Lemma, this is equiva-

lent to proving the induced

F(tni=1Ui)→
n∏
i=1

F(Ui)

to be an isomorphism. This is the sheaf condition of F for the covering

{Uj → tni=1Ui}j=1,...,n.

We deduce the claim.

Proposition 2.24. Let U ∈ EtX and F ⊂ hU be a subsheaf in Sh(EtX,Set). Then,

there exists some open subscheme V ⊂ U and an isomorphism hV ∼= F .

Proof. (ii) of Proposition 5.2.7 in [2].

Corollary 2.25. Let X be quasi-compact and quasi-separated. Then, F ∈ Sh(EtX ,Set)

is finitely presentable iff there exists some U ∈ EtfpX and an epimorphism hU → F .

Proof. By corollary 2.22, Sh(EtfpX ,Set) is locally finitely presentable with strong gener-

ator

EtfpX ⊂ Sh(EtX , Set).

Thus, every finitely presentable object in Sh(EtX, Set) is a finite colimit of objects in

EtfpX . We deduce the finitely presentable objects in Sh(EtX, Set) to be the coequalizers

of sheaves representable by objects in EtfpX since EtfpX ⊂ Sh(EtfpX , Set) is closed under

finite coproducts. In particular, every finitely presentable object is a quotient of a

representable sheaf. On the other hand, given some epimorphism hU → F , we obtain

an induced coequalizer diagram

hU ×F hU ⇒ hU → F .

The canonical

hU ×F hU → hU × hU ∼= hU×XU

is a monomorphism. Thus, we deduce hU ×F hU to be representable by lemma 5.5.

Thus, F is a coequalizer of representable sheaves. We deduce the claim.

Using the theory of relative normalization, we can proof the following.

Theorem 2.26. Assume X is a noetherian scheme and Λ is a noetherian ring. Let F
be a finitely presentable object in Sh(EtX,Set) resp. Sh(EtX, Λ Mod). Then, there exist



2 Étale Cohomology 35

n ∈ N, finite and over a non-empty open étale morphisms fi : Yi → X, finite sets resp.

finite Λ-modules Ei for all i = 1, ..., n and a monomorphism

F ⊂
n∏
i=1

fi∗Ei.

Proof. This is [10, Tag 09Z6] where finitely presentable is replaced by constructible.

However, we deduce the equivalence of both conditions, being constructible and being

finitely presentable, for sheaves of sets by [10, Tag 09Y9] combined with the arguments

in corollary 2.25.

The constructible sheaves of Λ-modules are precisely the finite colimits of objects of

the form Λ[−] ◦ hU for U ∈ EtfpX by [10, Tag 095N]. Therefore, it suffices to prove that

such objects define a strong generator of finitely presentable objects in Sh(EtX , Λ Mod).

The forgetful functor

Λ Mod→ Set

preserves filtered colimits. We deduce the forgetful functor

Sh(EtX, Λ Mod)→ Sh(EtX,Set)

to preserve filtered colimits by using corollary 2.22. Thus, given U ∈ EtfpX , the Λ-module

sheaf Λ[−] ◦ hU is finitely presentable since hU is by using

HomSh(EtX,Λ Mod)(Λ[−] ◦ hU ,−) ∼= HomSh(EtX,Set)(hU ,−).

To check that such sheaves form a strong generator is straight forward by using that

representable sheaves form a strong generator.

The proof given in [10, Tag 09Z6] rests on the ascending chain condition for finitely

presentable objects. Let us as at least give a proof for representable sheaves of sets.

Lemma 2.27. Let X be a noetherian scheme and U → X étale and quasi-compact.

Then, hU ∈ Sh(EtX ,Set) satsifies the ascending chain condition, i.e. for every ascend-

ing chain of subsheaves

F1 ⊂ F2 ⊂ · · · ⊂ hU

there exists some i0 with F i = F i+1 for all i ≥ i0.

Proof. Let

F1 ⊂ F2 ⊂ · · · ⊂ hU

be an ascending chain of subsheaves. Then, there exist Ui ⊂ U open such that F i ∼= hUi

by proposition 2.24. Remark U to be noetherian since it is locally of finite presentation

https://stacks.math.columbia.edu/tag/09Z6
https://stacks.math.columbia.edu/tag/09Y9
https://stacks.math.columbia.edu/tag/095N
https://stacks.math.columbia.edu/tag/09Z6
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and quasi-compact over a noetherian scheme. Thus, the open subset ∪NUi ⊂ U is

quasi-compact. In particular, the open covering

{Ui ⊂ ∪NUi}N

admits a finite subcovering

∪NUi = Ui1 ∪ · · · ∪ Uin .

We conclude Ui = Ui+1 for every i ≥ max{i1, ..., in}.

2.6 Limits of schemes

Here is a pleasant property of finitely presentable algebras. Let

(fi : Ai → A)I

be a filtered colimit cocone of rings. By the very construction of the filtered colimit,

for every finite collection of elements

a1, ..., an ∈ A

there exists some i ∈ I and

ai1, ..., ain ∈ Ai

such that fi(aik) = ak. Consider the finitely presentable A-algebra

B ∼= A[t1, ..., tn]/(g1, ..., gm).

There exists some i such that the finitely many coefficients of all gj are in the image of

fi. We deduce the existence of some Ai-algebra Bi of finite presentation together with

an isomorphism

A⊗Ai Bi
∼= B.

Using this idea, we can even prove every morphism of finitely presentable A-algebras

to be induced by some morphism of finitely presentable Ai-algebras in the above sense.

We can even generalize the above to cofiltered limits of schemes.

Definition 2.28. Let S be a scheme. Define

Sch /Sfp ⊂ Sch /S

to be the full subcategory of S-schemes of finite presentation.
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The category of schemes does not have all limits. However, by using the relative

spectrum construction, we may prove the existence of limits of cofiltered diagrams with

affine transition maps, see [10, Tag 01YX] for the directed set case.

Theorem 2.29. Let S(−) : I → Sch /S0 be a cofiltered diagram with affine transition

maps and S0 quasi-compact and quasi-separated. Define (φi : S → Si)I to be its limit

in Sch /S0. Then, the induced functor

colim
I

(Sch /Si
fp)

∼→ Sch /Sfp, [(Xi, Si)] 7→ S ×Si Xi

is an equivalence.

Proof. We see by 1.5 Theorem in [7] that there always exists a small cofinal subdiagram

of a filtered diagram given by a directed set. Therefore, we may assume I is a directed

set. Then, we deduce the existence of the limit of S(−) by [10, Tag 01YX] and the

second claim by [10, Tag 01ZM].

Proposition 2.30. By the very nature of the proof, the equivalence restricts to an

equivalence of full subcategories with property (P), for (P) being

1. open immersion

2. closed immersion

3. separated

4. finite

5. surjective at the level of topological spaces

6. étale

7. proper

Proof. This is Proposition 1.10.10 in [2] despite 6. For 6. see [10, Tag 07RP].

Theorem 2.31. Let S(−) : I → Sch /S0 be a cofiltered diagram of quasi-compact and

quasi-separated S0-schemes with affine transition maps and S0 quasi-compact and quasi-

separated. Denote by

(φi : S → Si)I

its limit in Sch /S0. Assume all S, S0 and Si to be noetherian. Let

F ∈ Sh(EtS, Λ Mod)

https://stacks.math.columbia.edu/tag/01YX
https://stacks.math.columbia.edu/tag/01YX
https://stacks.math.columbia.edu/tag/01ZM
https://stacks.math.columbia.edu/tag/07RP
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be finitely presentable for Λ some noetherian ring. Then, there exists some

F i ∈ Sh(EtfpSi
, Λ Mod)

finitely presentable and an isomorphism

φ∗i F i ∼= F .

Proof. This is Lemma 5.9.8 in [2] where finitely presentable is replaced by constructible.

However, we argue similar as in the proof of theorem 2.26 to deduce the claim.

2.7 Étale Cohomology generalizes cohomology of quasi-coherent sheaves

In this chapter we briefly state the comparison of étale and quasi-coherent sheaf coho-

mology. We will often omit the distinction between a quasi-coherent module and its

underlying sheaf of abelian groups.

The étale sheaf Ga factorizes canonically through the category of commutative rings.

To indicate this, we denote it by

OS,et : EtX → CRing, U 7→ OU (U).

Observe the restriction of OS,et to ZarS and the structure sheaf OS to agree.

Lemma 2.32. Let S be a scheme andM be a quasi-coherent OS-module. Denote by g∗q

the pullback of quasi-coherent modules, i.e. g∗qM = OX ⊗g∗OS
g∗M for every morphism

of schemes g : X → S. Then, the presheaf

Met : EtS → Ab, (f : U → S) 7→ Γ(U, f∗qM)

is a sheaf.

Proof. Example 1.2.6.1 in [12].

Example 2.33. By the very construction, OS,et ∼= (OS)et are canonically isomorphic.

Corollary 2.34. Let S be a scheme and M be a quasi-coherent OS-module. Then, the

restriction of Met to ZarS ⊂ EtS is canonically isomorphic to M.

Remark 2.35. Given a scheme S, denote by

i : ZarS → EtS
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the inclusion of sites. Observe that the restriction

i∗ : Sh(EtS,Ab)→ Sh(ZarS ,Ab)

preserves flasque sheaves and is left exact. Then, Grothendieck’s spectral sequence ap-

plied to the composition Γ(S, -) = Γ(S, -)Zar ◦i∗ of left exact functors yields a converging

spectral sequence

Epq2 = Hp
Zar(S,R

qi∗F)⇒ Hp+q
et (S,F) = Ep+q

for every F ∈ Sh(EtS,Ab). Identifying

R0i∗Met = i∗Met
∼=M

by corollary 2.34 the spectral sequence yields an edge morphism

Hp
Zar(S,M)→ Hp

et(S,Met).

Recall the following central lemma.

Lemma 2.36. Let X = Spec(A) be an affine scheme and M a quasi-coherent OX-

module. Then, Hq
Zar(X,M) = 0 for all q > 0.

Proof. Theorem 18.2.4 in [4].

Theorem 2.37. Let S be a scheme and M be a quasi coherent OS-module. Then, the

edge morphism in remark 2.35

Hp
Zar(S,M)→ Hp

et(S,Met)

is an isomorphism for all p.

Proof. In order to prove

Hp
Zar(S,M)→ Hp

et(S,Met)

to be an isomorphism it suffices to prove Rqi∗Met = 0 for all q > 0 by using the con-

verging spectral sequence from above. Recall Rqi∗Met to be given by the sheafification

of the Zariski presheaf

ZarS → Ab, (U ⊂ S) 7→ Hq
Zar(U, i∗Met)
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by lemma 1.34. It suffices to prove

Hq
Zar(U,M) ∼= Hq

Zar(U, i∗Met) ∼= 0

for every affine open U ⊂ S and q > 0 since every open U ⊂ S admits a covering by

affine opens. We deduce the claim by lemma 2.36.

Using similar arguments we can prove the following lemma.

Lemma 2.38. Let X be a scheme. Then, the edge morphism

H1
Zar(X,O×X)→ H1

et(X,O×X,et)

is an isomorphism.

Proof. Proposition 5.7.7. in [2].

Remark 2.39. Let f : X → S be a morphism of schemes. We obtain a canonical

morphism

O×S,et → f∗O×X,et

such that the restriction to ZarS is the canonical

O×S → f∗O×X .

Construction 2.17 yields a morphism

H1
et(S,O×S,et)→ H1

et(X,O×X,et).

Along the isomorphism of lemma 2.38, we obtain a morphism

α : H1
Zar(S,O×S )→ H1

Zar(X,O×X).

We can check that this is the base change in topological sheaf cohomology. Recall

furthermore Pic(−) ∼= H1
Zar(−,O

×
(−)) to be isomorphic such that the diagram

Pic(S) H1
Zar(S,O

×
S )

Pic(X) H1
Zar(X,O

×
X)

f∗(−)⊗f∗ OS
OX

∼=
α

∼=

commutes where the left vertical arrow is given by the base change of quasi-coherent

modules.



2 Étale Cohomology 41

Lemma 2.40. Let X be a scheme and I be a coherent OX-ideal with

In = 0

for some n. Denote by

F : X ′ = Spec
X

(OX /I)→ X

the induced morphism. If H2
Zar(X, I) = 0, then, base changing induces an epimorphism

Pic(X) → Pic(X ′). If H1
Zar(X, I) = 0, then, base changing induces a monomorphism

Pic(X)→ Pic(X ′).

Proof. Let n ∈ N such that In = 0. The canonical morphism X ′ → X factorizes as a

canonical sequence

Spec
X

(OX /I)→ Spec
X

(OX /I2)→ · · · → Spec
X

(OX /In−1)→ X.

By induction, we may assume n = 2. Observe that the topological spaces of X and X ′

agree since the defining ideal is nilpotent. We obtain a short exact sequence of abelian

sheaves on the topological space X

0→ I → O×X → O
×
X′ → 0

where the first morphism is given by α 7→ 1 + α and the second morphism is the

canonical O×X → f∗O×X′ = O×X′ . The claim follows by the long exact sequence of

Zariski cohomology groups and lemma 2.38 together with the compatibility of remark

2.39.

Corollary 2.41. If X = Spec(A) is the spectrum of a commutative ring, then,

H2
Zar(X, I) = H1

Zar(X, I) = 0

by lemma 2.36. Hence, wo obtain the well known isomorphism Pic(X) ∼= Pic(X ′).

Corollary 2.42. Let X be a scheme and I be a coherent OX-ideal sheaf with In = 0

for some n. Denote by

X ′ = Spec
X

(OX /I).

If X is a noetherian scheme of dimension ≤ 1, then,

H2
Zar(X, I) = 0

and, hence, Pic(X)→ Pic(X ′) is an epimorphism.
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Proof. By Theorem III.2.7 in [13] we deduce Hq
Zar(X, I) = 0 for all q > dimX = 1. We

deduce the claim by lemma 2.40.

2.8 Compatibility with filtered colimits

Theorem 2.43. Let S be a quasi-compact and quasi-separated scheme and (F i → F)I

be a colimit cocone in Sh(EtS, C) for some filtered index category I and C = Set,Ab.

The induced cocone

(F i(U)→ F(U))I

is a colimit cocone for all U ∈ EtfpS . If C = Ab, then, the induced cocone

(Hq
et(U,F i)→ Hq

et(U,F))I

is a colimit cocone for all U ∈ EtfpS and q.

Proof. The restriction Sh(EtS,Ab)
∼−→ Sh(EtfpS ,Ab) defines an equivalence by lemma

2.20. Furthermore, EtfpS is noetherian by lemma 2.21. We deduce the claim by theorem

1.57.

We would in addition like to pass cofiltered limits of schemes through cohomology

groups in order to get noetherian arguments into the game. Let us provide a framework

for that.

Fix a cofiltered diagram

S(−) : Iop → Sch /S0

of quasi-compact and quasi-separated S0-schemes with affine transition maps and S0

quasi-compact and quasi-separated. Denote by

(φi : S → Si)Iop

its limit in Sch /S0. The main observation is that a sheaf on S is completely determined

by its direct images φi∗F by theorem 2.29. As a convention we will not distinguish

φPi,∗ : PSh(EtS , C)→ PSh(EtSi , C) and its restrictions to sheaves φi,∗ whenever it is not

necessary.

Definition 2.44. We define the category of presheaves on S(−), denoted by PSh(S(−),Set)

as follows.

1. Objects are families (F i)i∈I of presheaves F i ∈ PSh(EtSi , Set) together with mor-
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phisms αf : F j → Sf∗F i for every f : i→ j in Iop such that

Fk (Sg)∗F j

(Sf◦g)∗F i (Sf )∗ ◦ (Sg)∗F i

αg

αf◦g (Sg)∗(αf )

∼=

commutes for every f : i → j, g : j → k in Iop. We denote such an object by

(F i, αf ).

2. Morphisms (F i, αf ) → (Gi, βf ) are families of morphisms (fi : F i → Gi)i∈I of

presheaves such that

F j Gj

Sf∗F i Sf∗ Gi

fj

αf βf

Sf∗(fi)

commutes.

3. The composition is given pointwise and the identity is the canonical family of

identities.

One can check that this defines a category.

Remark 2.45. We obtain a canonical functor

R : PSh(EtS ,Set)→ PSh(S(−),Set),F 7→ (φi∗F , αf )

with

αf : (φj)∗F → (Sf ◦ φi)∗F

induced by the canonical isomorphism φj ∼= Sf ◦ φi for every f : j → i in I. Let

(Fi, αf ) ∈ PSh(S(−),Set)

be a presheaf on S(−). For each U ∈ EtfpS there exists some i and Ui ∈ EtfpSi
such that

U ∼= S ×Si Ui by proposition 2.30. Define

Uj = Ui ×Si Sj

for every j ∈ i/I. By fully faithfulness in proposition 2.30 and filteredness of I it is

straight forward to check that colimi/I F j(Uj) is (up to natural isomorphism) indepen-

dent of the choice of i and Ui. Thus, the assignement U 7→ colimi/I F i(Ui) is well
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defined. Given some morphism U → V in EtfpS there exists some j and Uj → Vj in EtfpSj

inducing U → V by fully faithfulness in theorem 2.29. We obtain a unique morphism

colimI/j Fk(Vk)→ colimI/j Fk(Uk).

Thus, the assignement extends to a presheaf denoted by L((F i, αf )) by using lemma

2.21. We can check this to extend canonically to a functor

L : PSh(S(−), Set)→ PSh(EtS ,Set).

Remark 2.46. Observe

φi∗L((F i, αf ))(U) ∼= colimf∈i/I((Sf )∗F j(U))

to be canonically isomorphic for all U ∈ EtfpSi
by definition. We deduce

φi∗L((F i, αf )) ∼= colimf∈i/I(Sf )∗F j

to be canonically isomorphic. Therefore, if all F i are sheaves, then, also φi∗L((F i, αf ))

is a sheaf by theorem 2.43.

Lemma 2.47. The functor R is right adjoint to L constructed in remark 2.45.

Proof. We deduce a natural bijection

HomPSh(EtS ,Set)(L((F i, αf )),G) ∼= lim
I

Hom(F i, φi∗ G)

with transition maps given by

Hom(F j , φj∗ G)→ Hom(F i, φi∗ G) ∼= Hom(F i, (Sf ◦ φj)∗ G), αj 7→ Sf∗(αj) ◦ αf

for every morphism f : j → i in I by inspection and the previous remark. Therefore, a

morphism L((F i, αf ))→ G is given by a family αi : F i → φi∗ G such that

F j φj∗ G

Sf∗F i Sf∗φi∗ G

αj

αf

Sf∗(αi)

commutes. This is the same as a morphism (F i, αf ) → RG in PSh(S(−),Set). We

deduce the claim.

Lemma 2.48. Let (F i, αf ) ∈ PSh(S(−),Set) and (fi : φ∗i,P F i → F)I be a colimit
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cocone in PSh(EtS , Set). Then, the family

(F i → φi∗φ
∗
i,P F i

φi∗(fi)→ φi∗F)I

with F i → φi∗φ
∗
i,P F i the units of the adjunctions φ∗i,P a φi∗ induces an isomorphism

F ∼→ L((F i, αf ))I .

Proof. We obtain a sequence of natural isomorphisms

HomPSh(EtS ,Set)(L((F i, αf )),−) ∼= lim
I

HomPSh(EtSi
,Set)(F i, φi∗(−))

∼= lim
I

HomPSh(EtSi
,Set)(φ

∗
i,P F i,−) φ∗i,P a φi∗

∼= HomPSh(EtS ,Set)(F ,−)

similar to the proof of the previous lemma. By Yoneda’s Lemma, this natural transfor-

mation is given by precomposing with the isomorphism L((F i, αf ))→ F corresponding

to idF . Along the sequence of isomorphism, this isomorphism is pointwise induced by

the family

(F i(Ui)→ φi∗φ
∗
i,P F i(Ui)

φi∗(fi)→ φi∗F(Ui))I

in question.

Remark 2.49. We want to generalize the above lemma to sheaves and inverse images

of sheaves. Recall the inverse image f∗ to be given by the composition (−)# ◦ f∗P for

every morphism of schemes f : X → S. In order to generalize the above, we need to

prove that F ∼= L((F i, αf )) is a sheaf. To keep arguments simple we avoid introducing

notation of sheaves and abelian group objects in PSh(S(−),Set). We would only need

them for the proof of corollary 2.52 and theorem 2.58.

Lemma 2.50. Let (F i, αf ) ∈ PSh(S(−), Set) such that all F i are sheaves. Then,

L((F i, αf )) is a sheaf.

Proof. Let

{Uj → U}j∈J

be a covering in EtfpS . We may assume that J is finite since EtfpS is noetherian. Then,

there exists some i and a covering

{Uij → Ui}j∈J
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in EtfpSi
which base changes to

{Uj → U}j∈J

by proposition 2.30. Therefore, it suffices to prove φi∗L((F i, αf )) to be a sheaf for all

i ∈ I. This was noticed in remark 2.46.

Lemma 2.51. Let (F i, αf ) ∈ PSh(S(−),Set) be a presheaf on S(−). The family of

morphisms F i → F#
i induces a morphism (F i, αf ) → (F#

i , βf ) in PSh(S(−), Set) with

βf constructed below. The induced morphism

L((F i, αf ))→ L((F#
i , βf ))

is the sheafification of L((F i, αf )).

Proof. Let f : i→ j be a morphism in Iop. We obtain a unique morphism

βf : F#
j → Sf∗F#

i

making the evident square commute. Therefore, (F#
i ) together with the morphisms

βf is indeed a presheaf on S(−) and the sheafification morphisms F i → F#
i induce a

morphism (F i, αf ) → (F#
i ) in PSh(S(−), Set). By the previous lemma, L((F#

i )) is a

sheaf. We derive the result by the sequence of natural isomorphisms

HomPSh(EtS ,Set)(L((F i, αf )),G) ∼= lim
I

HomPSh(EtSi
,Set)(F i, φi∗(G))

∼= lim
I

HomSh(EtSi
,Set)(F

#
i , φi∗(G))

∼= HomSh(EtS ,Set)(L((F#
i , βf )),G)

for every G ∈ Sh(EtS,Set).

Corollary 2.52. Let (F i, αf ) ∈ PSh(S(−), Set) such that all F i are sheaves. Denote

by

(fi : φ∗i F i → F)I

a colimit cocone in Sh(EtS , Set). Then, the family

(F i(Ui)→ φi∗φ
∗
i F i(Ui)

φi∗(fi)→ φi∗F(Ui))I

with F i → φi∗φ
∗
i F i the units of the adjunctions φ∗i a φi∗ induces an isomorphism

F ∼−→ L((F i, αf )).
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Proof. We have a sequence of natural isomorphisms

HomPSh(EtS ,Set)(L((F i, αf )),G) ∼= lim
I

HomSh(EtSi
,Set)(F i, φi∗(G))

∼= lim
I

HomSh(EtSi
,Set)(φ

∗
i F i,G) φ∗i a φi∗

∼= HomPSh(EtS ,Set)(F ,G)

for every sheaf G. We deduce the claim with similar arguments as in lemma 2.51.

An important example is the following.

Example 2.53. Let F0 ∈ Sh(EtS0 , Set) and define F resp. F i to be the inverse images

(of sheaves) of F0 under the structure morphism Si → S0 resp. S → S0. Then, the

family (F i)i∈I Together with the canonical family of morphisms

αf : F j → Sf∗F i

is an element of PSh(S(−), Set) with all F i sheaves. Observe

φ∗i F i ∼= F

to be canonically isomorphic. Let Ui ∈ EtfpSi
be an étale and finitely presentable Si-

scheme. Define U = Ui ×Si S and Uj = Ui ×Si Sj for every morphism f : i → j in I.

Then, the cocone induced by units

(F j(Uj)→ φj∗φ
∗
j F j(Uj) ∼= F(U))i/I

is a colimit cocone by the previous corollary.

Remark 2.54. The above is a generalization of the fully faithfulness in 2.30. Indeed,

given some objects Vi and Ui of EtfpSi
define Uj , U , Vj and V as usual. Then, the family

of units

−×Sj S : hUj (Vj)→ φj∗φ
∗
jhUj (Vj) = hU (V )

induces a colimit diagram.

We want to extend example 2.53 to cohomology groups.

Remark 2.55. Let (F i, αf ) be a presheaf on S(−) such that all F i are sheaves of

abelian groups and all αf are morphisms of abelian sheaves. Then, for every U ∈ EtfpS
there exists a unique abelian group structure on L((F i, αf ))(U) making the colimit

morphisms

F i(Ui)→ L((F i, αf ))(U)
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morphisms of abelian groups since L((F i, αf )) is pointwise a filterd colimit of abelian

groups F i(Ui). In particular, L((F i, αf )) is an abelian sheaf on EtS by using lemma

2.21.

Lemma 2.56. Let (F i, αf ) ∈ PSh(S(−),Set) be a presheaf on S(−) such that all F i are

abelian sheaves and αf are morphisms of abelian sheaves. If all F i are flasque, then,

L((F i, αf )) is flasque.

Proof. Let U = {Uj → U}j∈J be a covering in EtfpS . We may assume J to be finite

since EtfpS is noetherian. There exists some étale covering {Uij → Ui}j∈J in EtfpSi
which

is isomorphic to U after base changing to S by proposition 2.30. We compute

Ȟq(U , L((F i, αf ))) ∼= colim
k∈i/I

Ȟq({Uij ×Si Sk → Ui ×Si Sk}j∈J ,Fk)

since the covering is finite and filtered colimits commute with finite limits. Thus,

all higher Čech cohomology groups vanish since all F i are flasque and we deduce

L((F i, αf )) to be flasque.

Lemma 2.57. Let (F i, αf ) ∈ PSh(S(−),Set) be a presheaf on S(−) such that all F i are

abelian sheaves. There exists a morphism (F i, αf )→ (Gi, βf ) in PSh(S(−), Set) with

1. all Gi ∈ Sh(Si,Ab) are injective abelian sheaves.

2. all F i → Gi are monomorphisms of abelian sheaves.

Proof. We choose for every i in I an inclusion γ̃i : F i ⊂ G̃i such that G̃i is an injective

object in Sh(EtSi ,Ab). To make this choice functorial we define

Gi =
∏

f :j→i∈Iop/i

Sf∗G̃j

for every i in I. We obtain canonical morphisms of sheaves of abelian groups

βf : Gj → Sf∗ Gi

such that (Gi, βf ) is a presheaf on S(−). Furthermore, we obtain a morphism

γi : F i → Gi

induced by the morphisms

Sf∗(γ̃j) ◦ αf : F i → Sf∗F j ⊂ Sf∗G̃j .
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We can check those to induce a morphism (F i, αf ) → (Gi, βf ) in PSh(S(−), Set). The

monomorphism γ̃i factorizes canonically through γi for every i ∈ I. Thus, γi is a

monomorphism. At last, we recall all direct image functors to preserve injective sheaves

by lemma 1.32. Thus, the abelian sheaves Gi are injective. We deduce the claim.

Theorem 2.58. Let (F i, αf ) ∈ PSh(S(−),Set) be a presheaf on S(−) such that all F i
are abelian sheaves and αf are morphisms of abelian sheaves. Denote by

(fi : α∗i F i → F)I

a colimit cocone in Sh(EtS ,Ab). Let Ui be in EtfpSi
and define U = Ui ×Si S and

Uj = Ui ×Si Sj. Then,

colim
i/I

Hq
et(Uj ,F j)

∼→ Hq
et(U,F)

are isomorpic induced by the family of morphisms

(F j → φj∗φ
∗
j F j

φj∗(fj)
→ φj∗F)i/I

with F i → φi∗φ
∗
i F i the units of the adjunctions φ∗i a φi∗.

Proof. Without loss of generality we may replace i/I by I. We prove the claim by

induction over q. In the case q = 0, this was proved in corollary 2.52. Assume the claim

holds for q ≥ 0. Choose a morphism (F i, αf ) → (Gi, βf ) as in the previous lemma.

Denote by Gi → Hi a cokerenel for every i. We check their universal property induce a

family

γf : Hj → Sf∗Hi

for every f : i→ j in I such that

(Gi, βf )→ (Hi, γf )

is a morphism in PSh(S(−),Set). Observe both

colimI Hq+1
et (Ui,Gi) ∼= 0 and Hq+1

et (U, colimI Gi) ∼= 0

to be zero since each Gi is flasque as well as colimI Gi is flasque by lemma 2.56. We

obtain a commutative latter

colimI Hq
et(Ui,Gi) colimI Hq

et(Ui,Hi) colimI Hq+1
et (Ui,F i) 0

Hq
et(U, colimI Gi) Hq

et(U, colimI Hi) Hq+1
et (U,F) 0
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by the long exact sequence of cohomology groups. Observe the upper row to be exact

since filtered colimits are exact. The first two vertical morphisms are isomorphisms by

induction hypothesis. We deduce the second vertical morphism to be an isomorphism

by the four lemma.

Example 2.53 generalizes to cohomology groups.

Example 2.59. Let F0 ∈ Sh(EtS0 ,Ab) be a sheaf on EtS0 and Ui be an element of

EtfpSi
. Define F , F i, Uj and U as in example 2.53. Then, the cocone induced by units

(Hq
et(Uj ,F j)→ Hq

et(U,F))i/I

is a colimit cocone.
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3 Henselian rings and étale stalks

3.1 Points, neighbourhoods and stalks

In contrast to the Zariski site, the étale site of a field may not be trivial. However, the

étale site of a field k consists only of finite disjoint unions of k iff k is separably closed.

In that case, a sheaf on EtSpec(k) is completely determined by its value at Spec(k),

i.e. Γ(Spec(k),−) defines an equivalence of categories. We are tempted to think of

separably closed fields as the “true” points with respect to the étale topology.

Definition 3.1. Let X be a scheme and x ∈ X be a point of X. A geometric point

at x is a morphism Spec(k) → X of schemes with k a separably closed field such that

its topological image is x. In other words, a geometric point at x is a choice of an

embedding of the residue field at x into a separably closed field.

Given a point x ∈ X and an embedding of the residue field at x into a separable

closure κ(x) ⊂ k̄sep, we denote by x̄ the corresponding morphism

Spec(k̄sep)→ Spec(κ(x))→ X.

We define the étale stalk analogously to the Zariski stalk.

Definition 3.2. Let X be a scheme and

p : Spec(k)→ X

be a geometric point at x ∈ X. An etale neighbourhood of p, denoted by

f : (U, u)→ (X, p),

is an étale morphism f : U → X together with a geometric point u : Spec(k) → U

such that p = f ◦ u. A morphism f : (U, u) → (V, v) of étale neighbourhoods of p is

a morphism f : U → V of X-schemes such that f ◦ u = v. We denote by NEtp the

category of étale neighbourhoods of p with canonical identity and composition.

Remark 3.3. Let k be a separably closed field and p : Spec(k) → X be a geometric

point with topological image x. Choose a factorization p = e◦ x̄, i.e. choose a separable

closure κ(x) ⊂ κ(x)
sep

and an embedding e : κ(x)
sep ⊂ k. Then, precomposing with e

induces an equivalence

NEtx̄ → NEtp .

Thus, at the level of neighbourhoods, the choice of a geometric point does only depend

on its topological image.
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Definition 3.4. Let X be a scheme, F be an object in PSh(EtX, Set) (resp. an object

in Sh(EtX, Set)) and p : Spec(k)→ X be a geometric point at x ∈ X. Then, F induces

a diagram

NEtopp → Set, (U, u) 7→ (F )(U), f 7→ F(f).

The stalk of F at p is the colimit of this diagram, denoted by

Fp = colim
(U,u)→(X,p)

F(U)

By the previous remark, up to natural isomorphism two geometric points with the same

topological image induce the same étale stalk.

Remark 3.5. Denote by p : Spec(k)→ X a geometric point.

1. We observe Fp ∼= p∗F(Spec(k)) to be canonically isomorphic by construction. In

particular, taking stalks at p extends to an exact right adjoint

(−)p : Sh(EtX, Set)→ Set

such that Γ(Spec(k),−) ◦ p∗ ∼= (−)p are isomorphic since Γ(Spec(k),−) is an

equivalence.

2. Let
X

Spec(k) S

f

p

q

be a commutative diagram of schemes. The natural isomorphism q∗ ◦ f∗ ∼= p∗

induces a natural isomorphism (f∗F)q ∼= Fp.

Remark 3.6. Let X be a scheme and x ∈ X. Whenever we write x̄ we implicitely

made a choice of an embedding of κ(x) into some separable closure. In the context of

stalks, remark 3.3 ensures the independence of that choice up to natural isomorphism.

Furthermore, by “A property (P) holds on stalks.” we indicate that property (P) holds

after applying (−)x̄ for all x ∈ X.

Let us collect a number of results similar to ordinary sheaf theory on topological

spaces.

Lemma 3.7. Let F ∈ PSh(EtX ,Set) be a presheaf. The unit morphism F → F# is an

isomorphim on stalks.

Proof. Proposition 5.3.1 in [2].
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Lemma 3.8. A morphism f : F → G in Sh(EtS,Set) is an isomorphism iff it is on

stalks.

Proof. The only if part is clear. The if part is Lemma 5.3.2 in [2].

Remark 3.9. Let p be a geometric point at some scheme X. Taking stalks preserves

algebraic structures since it preserves finite limits. Thus, we obtain a unique factoriza-

tion

Sh(EtX, C) Sh(EtX, Set)

C Set

forget

(−)p (−)p

forget

for C = Ab, Λ Mod,CRing and forget the respective forgetful functor.

Corollary 3.10. Let X be a scheme. A sequence

0→ A→ B → C → 0

in the category of sheaves on EtX with values in abelian groups or Λ-modules is exact

iff it is on stalks.

Proof. Proposition 5.3.3 [2]

Example 3.11. Let X be a scheme and p be a geometric point at x ∈ X. The étale

sheaf OX,et represented by Spec
X

(OX [t]) takes values in commutative rings. We denote

by OX,p the etale stalk of OX,et at p. Since the étale stalk is defined as a filtered colimit,

OX,p inherits a canonical structure as a commutative ring.

Recall the Zariski stalk of OX at some x ∈ X to be a local ring. We ask what kind

of structure OX,x̄ possesses.

Example 3.12. For X = Spec(k) the spectrum of a field, OX,x̄ ∼= K is the separable

closure of k chosen in x̄ : Spec(K) → Spec(k). Indeed, by using every étale X scheme

to be a finite disjoint union of spectra of finite and separable field extensions of k, we

easily deduce

OX,x̄ ∼= colim
k⊂L⊂K

L = K

where the colimit is over all finite and separable field extension k ⊂ L contained in K.

We will frequently use the following technical lemma.

Lemma 3.13. Let X be a scheme, U ⊂ X an open subset and x ∈ X. Then, the

canonical morphism OU,x̄ → OX,x̄ is an isomorphism. Furthermore, the subdiagram of

NEtx̄ consisting of étale X-schemes which are affine schemes is cofinal.
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Proof. Observe that x̄ canonically factorizes through U ⊂ X. Furthermore, we can

check the canonical OU,x̄ ∼= ((U ⊂ X)∗OX,et)x̄ → OX,x̄ to be an isomorphism by using

2. of remark 3.5.

The second claim is clear by using that every geometric point in a scheme factorizes

through some affine open.

Lemma 3.14. Let X be a scheme and x ∈ X. The étale stalk OX,x̄ is a local ring.

Furthermore, the inclusion ZarX ⊂ EtX induces a local and faithfully flat morphism

OX,x → OX,x̄.

Proof. First, recall that every local and flat morphism is faithfully flat. Let

f : (U, ū)→ (X, x̄)

be an étale neighbourhood of x̄. Denote by u the topological image of ū. Then, every

Zariski neighbourhood V ⊂ U of u is canonically an étale neighbourhood

f : (V, ū)→ (X, x̄)

of x̄. Thus, the canonical Spec(OX,x̄)→ U factorizes through the Zariski stalk

Spec(OU,u)→ U

at u. Checking

(fu : OU,u → OX,x̄)(U,ū)∈NEtx̄

to be a filtered colimit cocone with transition morphisms induced by the Zariski stalk

is then straight forward. Observe those transition morphisms to be local and flat by

using that étale morphisms are flat. Thus, OX,x̄ is local and all fu are local and flat

since the colimit is filtered. In particular, fx : OX,x → OX,x̄ is local and flat, hence,

faithfully flat.

Here is a crucial observation.

Lemma 3.15. Let X be a scheme and x ∈ X. Every standard étale morphism

OX,x̄ → (OX,x̄[t]/(f))g

such that there exists some prime ideal over the maximal ideal of OX,s̄ admits a split.

Proof. Let OX,x̄ → (OX,x̄[t]/(f))g be a standard étale ring morphism. By lemma 3.13,
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we may assume that X = Spec(A) is affine and write

(fB : B → OX,x̄)I

as a filtered colimit of étale ring morphisms A → B. There exists some A → B étale

such that all (finitely many) coefficience of g and f are elements of B and such that

the derivative of f is invertible in (B[t]/(f))g by the very structure of filtered colimits

of rings. We obtain a commutative diagram

B OX,x̄

(B[t]/(f))g (OX,x̄[t]/(f))g

.

We can check the induced A → (B[t]/(f))g to extend to an étale neighbourhood of x̄

such that the canonical B → (B[t]/(f))g is a morphism of neighbourhoods. Then, we

obtain a lift
B OX,x̄

(B[t]/(f))g (OX,x̄[t]/(f))g

making the evident triangles commute since OX,x̄ is the colimit of all étale neighbour-

hoods of x̄. In particular, the lift is a B-algebra morphism. Thus, it corresponds to an

element a ∈ OX,x̄ such that f(a) = 0 and g(a) ∈ O×X,x̄. In particular, a induces a split

(OX,x̄[t]/(f))g → OX,x̄, t 7→ a

of OX,x̄ → (OX,x̄[t]/(f))g.

Corollary 3.16. Let X be a scheme and x ∈ X. The residue field of OX,x̄ at its closed

point is the separable closure K of κ(x) chosen in the geometric point x̄ : Spec(K)→ X.

Proof. Denote by k the residue field of OX,x̄ at its closed point. Because x̄ factorizes

through the induced Spec(OX,x̄) → X, we obtain a factorization κ(x) ⊂ k ⊂ K. It

suffices to prove that every separable 0 6= f̄ ∈ k[t] has a root in k. Recall that an

element in OX,x̄ is a unit iff it is a unit in k since OX,x̄ is local. In particular, f̄ lifts to

a monic polynomial f ∈ OX,x̄[t]. Furthermore, f̄ and its derivative f̄ ′ jointly generate

k[t]. Thus, f and its derivative f ′ jointly generate OX,x̄[t]. In particular,

OX,x̄ → (OX,x̄[t]/(f))f ′

is standard étale and admits a split by the previous lemma. The split corresponds to
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an a ∈ OX,x̄ such that f(a) = 0 and f ′(a) 6= 0. In particular, the reduction of a in k is

a root of f̄ . Hence, k ⊂ K is an isomorphism.

3.2 Interlude on henselian rings

The results of this section mainly rest on results in commutative algebra. We will,

therefore, mostly give references of its proofs.

Definition 3.17 ((Strictly) henselian). Let (A,m, κ) be a local ring with maximal ideal

m and residue field κ. Then,

1. A is henselian if for every monic polynomial f ∈ A[t] and a0 ∈ κ such that

f(a0) = 0 and f ′(a0) 6= 0 in κ there exists a ∈ A with f(a) = 0 in A which

reduces to a0.

2. A is strictly henselian if A is henselian and κ is separably closed.

Example 3.18. The étale stalk of OX,et at some geometric point is strictly henselian

by lemma 3.15 and corollary 3.16. Indeed, denote by (OX,x̄,m, k) the étale stalk with

maximal ideal m and residue field k at m. Let f ∈ OX,x̄[t] be a monic polynomial and

a0 ∈ k such that f(a0) = 0 and f ′(a0) 6= 0 in k. Then, f, f ′ are coprime in k[t]. Since

OX,x̄ is local, f, f ′ are coprime in OX,x̄[t]. Thus, the induced morphism

OX,x̄ → OX,x̄[t]f ′/(f)

is standard étale, hence, admits a split by lemma 3.15. Observe that a split corresponds

to an a ∈ OX,x̄ with f(a) = 0 in OX,x̄ which reduces to a0.

The étale stalk even carries a universal property.

Definition 3.19 (Strict henselianization). Let (A,m) be a local ring and fix a separable

closure A/m ⊂ k. The category of strictly henselian A-algebras has objects strictly

henselian rings (B,n) together with a local morphism (A,m)→ (B,n) and a morphism

k ⊂ B/n making the induced diagram

A B

A/m k B/n⊂ ⊂

commute. Morphisms are A-algebra morphism such that the induced morphism of

residue fields is a k-morphism. The strict henselianization

(A,m)→ (Ash,msh)
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of (A,m) with respect to A/m ⊂ k is an initial object in that category.

Remark 3.20. Up to equivalence, the above definition does not depend on the choice of

a separable closure since the separable closure of some field is unique up to isomorphism.

Therefore, the strict henselianization does not depend on the choice of a separable

closure of A/m up to isomorphism. We will occasionally omit the embedding into a

separable closure.

We will prove in a moment that OX,x̄ is indeed the strict henselianization of OX,x.

To do so we need a couple of equivalent characterizations of henselian rings.

Theorem 3.21. Let (A,m) be a local ring. The following are equivalent.

1. A is henselian.

2. For any étale ring map f : A → B and n ∈ Spec(B) lying over m such that

f induces an isomorphism κ(m) ∼= κ(n), there exists a section g of f with n =

g−1(m).

3. Every finite A-algebra B decomposes into a finite product B ∼=
∏
Bi of local rings

Bi. In particular, each A→ Bi is finite and local.

Proof. This is (8) and (10) in [10, Tag 04GG]

From this we can derive an equivalent characterization of being strictly henselian.

Proposition 3.22. Let (A,m) be a local ring. The following are equivalent

1. A is strictly henselian.

2. For every étale morphism f : X → Spec(A) and x ∈ X lying over m, there exists

a section g : Spec(A)→ X of f such that g(m) = x.

Proof. Proposition 2.8.14 in [2].

Corollary 3.23. Let (A,m) be a (strictly) henselian local ring and f : (A,m)→ (B,n)

be a finite and local morphism of local rings. Then, B is (strictly) henselian.

Proof. We deduce by 3. of theorem 3.21 that B is henselian if A is since the composition

of finite morphisms is finite. Assume A to be strictly henselian. Since f is finite, the

induced field extension A/m ⊂ B/n is finite. Thus, B/n is separably closed since A/m

is.

https://stacks.math.columbia.edu/tag/04GG
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Corollary 3.24. Let (A,m) be a strictly henselian local ring. Then, the quotient map

A→ A/m

defines a geometric point m̄ and the trivial étale neighbourhood is initial in NEtm̄. In

particular, the canonical

Γ(Spec(A),−)→ (−)m̄

is an isomorphism.

Proof. Because A/m is separably closed, the first part is clear. Every étale neighbour-

hood of m̄ has a point above m by definition. Therefore, every étale neighbourhood of

m̄ is split by 2. of proposition 3.22. This proves the claim.

Proposition 3.25. Let X be a scheme and x ∈ X. Then, OX,x̄ is the strict henselian-

ization of OX,x with respect to the choice κ(x) ⊂ k made in x̄ : Spec(k) → X. In

particular, the strict henselianization of a local ring exists.

Proof. [10, Tag 04HX]

There exists also a notion of henselianization.

Definition 3.26. Let (A,m) be a local ring. The category of henselian A-algebras is

the subcategory of A-algebras consisting of henselian local A-algebras together with

local morphisms. The henselianization of (A,m) is an initial object in the category of

henselian A-algebras.

Lemma 3.27. Let (A,m) be a local ring. Then, the henselianization of (A,m) exists.

Proof. Proposition 2.8.9 in [2]

Here is an important property which the strict henselianization of a local ring inherits.

Proposition 3.28. Let (A,m) be a local and noetherian ring. Then, its strict henselian-

ization is noetherian.

Proof. This is (iv) of Proposition 2.8.17 in [2]

3.3 Finite morphisms

We can use our results to study direct image functors of finite morphisms.

https://stacks.math.columbia.edu/tag/04HX
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Remark 3.29. Let s̄ : Spec(k) → S be a geometric point and f : X → S be a finite

morphism of schemes. Consider the induced cartesian diagram

Xs̄ X

Spec(OS,s̄) S

g

f .

We have almost proved the canonical morphism

(f∗F)s̄ → g∗F(Xs̄)

to be an isomorphism for every sheaf F ∈ Sh(EtS, C) and C = Set,Ab, Λ Mod in chapter

2. However, we will postpone its proof to example 6.19 because the construction fits

nicely into the general framework of base change maps.

Theorem 3.30. Let f : X → S be a finite morphism of schemes, s ∈ S be a point and

F ∈ Sh(EtX, C) be a sheaf for C = Set,Ab, Λ Mod. Let

X0 Xs̄ X

Spec(k) Spec(OS,s̄) S

h

n

g

l f

s̄

be the diagram induced by the canonical Spec(OS,s̄) → S and quotient map OS,s̄ → k

with each square cartesian. Then, there exists a natural isomorphism

(f∗F)s̄
∼−→

∏
x∈X0

Ff◦x̄

constructed in the proof. In particular, f∗ is exact.

Proof. We may assume S = Spec(A) to be affine by using lemma 3.13. Then, X =

Spec(B) is affine since f is affine. Thus, the pullback Xs̄ = Spec(C) is affine. Observe,

the morphism

l : OS,s̄ → C

to be finite since f is. In particular, we obtain an isomorphism

C ∼=
n∏
i=1

Ci
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of OS,s̄-algebras for some finite, local and strictly henselian OS,s̄-algebras (Ci,mi) by

3. of theorem 3.21 combined with corollary 3.23. Observe the projection maps C → Ci

to be localizations at some idempotents ei. Thus, the induced

{ri : Spec(Ci)→ Xs̄}i=1,...,n

is an étale covering. Denote by m ⊂ OS,s̄ the unique maximal ideal. We obtain a

sequence of natural isomorphisms

(f∗F)s̄ ∼= g∗F(Xs̄) example 6.19

∼=
n∏
i=1

g∗F(Spec(Ci)) {Spec(Ci)→ Xs̄} étale covering, F sheaf

∼=
n∏
i=1

Fm̄i Ci strictly henselian, corollary 3.24.

The mi correspond to the maximal ideals of C which in turn correspond to the prime

ideals in C lying over m. In particular, the canonical X0 → Xs̄ = Spec(C) has topologi-

cal image the maximal ideals of C since X0
∼= Spec(C/mC) are canonically isomorphic.

This proves the first claim.

We can check exactness of f∗ stalkwise by lemma 3.8. We deduce f∗ to be exact by

the above natural isomorphism since all stalk functors as well as taking finite products

are exact.

3.4 Purely inseparable morphisms

With the above results on hand, we can now prove that certain morphisms of schemes

induce equivalences of categories of étale sheaves.

Definition 3.31. Let f : X → S be a finite morphism of schemes. We call f purely

inseparable if one of the following equivalent conditions hold.

1. For every s ∈ S there exists exactly one x ∈ X over s and the residue field

extensions is purely inseparable.

2. Over each geometric point Spec(k) → S with k algebraically closed there lies a

unique geometric point Spec(k)→ X <.

Example 3.32. Let X be a scheme and Xred the reduction of X. Then, the canonical

Xred → X is purely inseparable.

Remark 3.33. Being finite and 2. of the above definition are stable under base change.

Therefore, purely inseparable is stable under base change.
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Lemma 3.34. Let f : X → S be purely inseparable. Let s̄ be a geometric point at s ∈ S
and

X0 X

Spec(k) S

l

n f

be a cartesian square of schemes with k an algebraically closed field. Then, the under-

lying topological space of X0 consists of a single point.

Proof. We observe n to be purely inseparable by remark 3.33. Since the underlying

topological space of Spec(k) is triviel we deduce the claim by 1. of the above definition.

Lemma 3.35. Let f : X → S be a purely inseparable morphism and C = Set,Ab, Λ Mod.

Then, f∗ and f∗ define an equivalence of categories

f∗ : Sh(EtX, C) ' Sh(EtS, C) : f∗

Proof. Let µ : 1 ⇒ f∗f
∗ denote the unit and ε : f∗f∗ ⇒ 1 denote the counit. We

can check stalkwise if those are isomorphisms by lemma 3.8. Let F ∈ Sh(EtS, C) and

G ∈ Sh(EtX, C) be sheaves and s̄ be a geometric point at S. We may enlarge k without

changing the stalk by remark 3.3. Therefore, we may assume k to be algebraically

closed. Then, there exists a unique factorization

s̄ : Spec(k)
x̄→ X

f→ S

by assumption. In particular, the morphism (µF )s̄ factorizes as

F s̄ ∼= (f∗F)x̄
(f∗µF )x̄→ (f∗f∗f

∗F)x̄ ∼= (f∗f
∗F)s̄.

We recall εf∗ F to be a split of f∗µF by the triangle conditions for adjoint functors.

Therefore, it suffices to proof that ε is an isomorphism. Let

x̄′ : Spec(k′)→ X

be a geometric point at X. Again, we may assume k′ to be algebraically closed. The

fibre of f along f◦x̄′ has a trivial underlying topological space by lemma 3.34. Therefore,

we obtain an isomorphism

(f∗f∗F)x̄ ∼= f∗Ff◦x̄′ → F x̄′
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by theorem 3.30. By construction, this morphism is given by (εF )x̄′ . Therefore, εF is

stalkwise an isomorphism. We deduce the claim.

Corollary 3.36. Let f : X → S be a purely inseparable morphism of schemes. Then,

the unit and counit of the adjunction f∗ a f∗ induce isomorphisms

Hq(X,F) ∼= Hq(Y, f∗F)

and

Hq(Y,G) ∼= Hq(X, f∗G)
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4 Artin Approximation

We now briefly present a famous result that goes back to Michael Artin. The original

source is [14]. We are dealing with the following question.

Let A be a noetherian ring, m ⊂ A be a proper ideal and Â its m-adic completion.

Let

F :A Alg→ Set

be a finitely accessible, i.e. filtered colimits preserving, functor, c an integer and â ∈
F (Â). Does there exist some a ∈ F (A) such that a and â are equal in F (A/mc)?

A lot of interesting geometric structures are classified by such functors.

Example 4.1. Let X be an Spec(A)-scheme for some commutative ring A. The functor

mapping an A-algebra B to the set of isomorphism classes of finite étale X⊗AB-schemes

with transition maps given by the base change of schemes is finitely accessible. This is

a consequence of corollary 2.30.

Example 4.2. Let X be a scheme. Then, Pic(− ⊗A X) :B Alg → Set is a finitely

accessible functor with transition maps given by the base change of quasi-coherent

sheaves. This is essentially (2) of [10, Tag 0B8W] and (2) and (3) of [10, Tag 01ZR]

Let F = hB be a representable functor with

B = A[t1, .., tk]/(f1, ..., fl)

a finitely presentable A-algebra. Observe that an element f ∈ hB(C) for some A-algebra

C corresponds to elements c1, ..., ck ∈ C with fi((cj)) = 0 for all i. Thus, for F = hB

the above question translates into the following.

Let â ∈ Âk with fi(â) = 0 and c be an integer. Does there exist a ∈ Ak such that

fi(a) = 0 and aj = âj mod mc for all i, j?

The crucial insight of Artin is that the above question has a positive answer for

certain rings.

Theorem 4.3. Let A be the henselianization at some prime ideal of a finite-type algebra

over a field or an excellent discrete valuation ring. Let m ⊂ A be a proper ideal and Â

be the m-adic completian of A. Then, for every elements f1, ..., fl ∈ A[t1, ..., tk], c an

integer and â ∈ Āk such that fi(â) = 0 for all i, there exists an element a ∈ Ak such

that fi(a) = 0 and aj = âj mod mc for all i, j.

Proof. Theorem 1.10 in [14].

Combined with the above considerations we prove the following.

https://stacks.math.columbia.edu/tag/0B8W
https://stacks.math.columbia.edu/tag/01ZR
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Theorem 4.4. Let A be the henselianization at some prime ideal of a finite-type algebra

over a field or an excellent discrete valuation ring. Let m ⊂ A be a proper ideal and Â

be the m-adic completian of A. Let

F :A Alg→ Set

be a finitely accessible functor and â ∈ F (Â) and c an integer. Then, there exists

a ∈ F (A) such that ẑ and z become equal in F (A/mc).

Proof. We deduce the claim for functors representable by some finitely presentable

A-algebra by using the above considerations. Recall every A-algebra to be a filtered

colimit of finitely presentable A-algebras. By using that F is finitely accessible and

the structure of filtered colimits of sets, we deduce the existence of some morphism

of A-algebras f̂ : B → Â with B finitely presentable such that there exists some

b ∈ F (B) with F (f̂)(b) = â. Observe f̂ to be an element of hB(Â). Thus, there exists

f ∈ F (A) such that f and f̂ agree in F (A/mc). This is equivalent to the existence of

a commutative diagram

B Â

A A/mc

f̂

f

with A → A/mc and Â → A/mc the canonical maps. Applying F , we obtain a com-

mutative diagram

F (B) F (Â)

F (A) F (A/mc)

F (f̂)

F (f) .

Since â is in the preimage of F (f̂), we deduce the claim.

Let us recall Grothendieck’s existence theorem.

Definition 4.5. Let X be a noetherian scheme and I ⊂ OX be a quasi-coherent sheaf

of ideals. Define Coh(X, I) to be the full subcategory of inverse systems of coherent

OX -modules of those inverse systems (F i) such that each F i is annihilated by Ii and

the transition maps induce isomorphisms F i /Ii+1F i+1 → F i.

Theorem 4.6 (Grothendieck’s existence theorem). Let A be a noetherian ring complete

with respect to an ideal I. Let f : X → Spec(A) be a proper morphism of schemes and

define I = I OX . Then, the assignment

Coh(OX)→ Coh(X, I),F 7→ (F /IiF)
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defines an equivalence of categories.

Proof. [10, Tag088C]

Here is an important application of Grothendieck’s existence theorem and theorem

4.4.

Definition 4.7. Let X be a scheme. Denote by FEtX ⊂ EtX the full subcategory of

finite étale maps.

Theorem 4.8. Let
X0 X

Spec(k) Spec(A)

p

be a cartesian diagram of schemes with p proper and (A,m, k) henselian. Then, the

base change to X0 induces an equivalence of categories

−×X X0 : FEtX
∼→ FEtX0

Proof. Theorem 3.1 in [14].

https://stacks.math.columbia.edu/tag/088C
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5 Calculations of étale cohomology groups

5.1 The relation between torsors and H1

Recall the first Čech cohomology group for topological spaces to be given by “gluing

data” for torsors. Its proof generalizes verbatim to sites and a generalized notion of

torsor. Combined with the natural isomorphism of the first étale and the first Čech

cohomology group, we will deduce the first étale cohomology group to classify torsors.

Definition 5.1. Let G be a sheaf of groups on a site T . A G-torsor is a sheaf of sets

F on T endowed with an action

G ×F → F

satisfying the following two conditions.

1. For all X ∈ T there exists a covering of {Ui → X}i∈I such that F(Ui) 6= ∅ is

non-empty.

2. If F(X) 6= ∅ is non-empty, then, the action α(U) : G(X) × F(X) → F(X) is

simply transitive.

The category of G-torsors, denoted by Tors(T,G), is the full subcategory of G-sheaves

consisting of G-torsors. Denote by Tors
∼=(T,G) the class of G-torsors modulo isomor-

phism. This is a set.

Remark 5.2. Let G be a sheaf of groups on a site T . A G-sheaf F is a G-torsor iff for all

X ∈ C there exists a covering {Ui → X} such that F |Ui is isomorphic as G|Ui-sheaves

to G|Ui acting on itself by left multiplication.

Theorem 5.3. Let T be a site, G be an abelian sheaf on T and X ∈ T be a terminal

object. Then, there is a bijection

Tors
∼=(T,G)

∼−→ Ȟ1(X,G)

where the assignement is as follows. Given some G-torsor F , we pick a covering

{Ui → X}i∈I

such that F(Ui) 6= ∅ for all i ∈ I. Then, given an element (si) ∈
∏
I F(Ui), there exists

a unique

(αij) ∈
∏
I2

G(Ui ×X Uj)

such that

si|Ui×XUj = αijsj |Ui×XUj .
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We assign F the image of (αij) under the canonical

Č1({Ui → X}i∈I ,G)→ Ȟ1(X,G).

Proof. Theorem 3.38 in [15]

Corollary 5.4. Let T be a site and G be an abelian sheaf on T and X ∈ T be a terminal

object. Then,

Tors
∼=(T,G)

∼−→ H1(X,G)

are isomorphic.

Proof. We compose the isomorphism of the previous lemma with the isomorphism

Ȟ1(X,G)→ H1(X,G) given in corollary 1.44.

Lemma 5.5. Let X be a noetherian and separated scheme. An étale sheaf F ∈
Sh(EtX,Set) is representable by an étale X-scheme which is noetherian and separated

iff

1. all stalks of F are finite sets and

2. for all a, b ∈ F(U) the set {x ∈ U |a|x 6= b|x} ⊂ U is open.

Proof. Lemma 3.18 in [3].

We can apply the above lemma in the context of étale cohomology.

Corollary 5.6. Let X be a noetherian and separated scheme and G be a finite abelian

group. Then, every G-torsor F is representable by a finite étale X-scheme.

Proof. Recall G to be representd by the étale scheme

tGX → X

by using 4. of example 2.11 and that G is finite. Then, F is locally isomorphic to

G by remark 5.2. Therefore, we can easily check the conditions of 5.5 to be satisfied.

Thus, combined with the fully faithfulness of the Yoneda embedding we deduce F to be

representable by some étale X-scheme U which is étale-locally isomorphic to tGX → X.

It remains to prove that U is a finite X-scheme. We may check the claim Zariski-locally

on X. Thus, we may assume that X = Spec(A) is affine. Then, there exists a finite

(since X is quasi-compact), étale and affine covering {Spec(Bi)→ X}i=1,...,n such that
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each base change of U → X to Spec(Bi) is finite. In particular, its base change along

the canonical, faithfully flat morphism

Spec(
n∏
i=1

Bi)→ X

is finite. Thus, U → X is finite. We deduce the claim.

Remark 5.7. The bijection in 5.3 is functorial in the following sense. Let f : X → S

be a morphism of schemes, G ∈ Sh(EtS ,Ab) be a sheaf and F be a G-torsor with α

the G-sheaf structure. The inverse image of the underlying sheaf of sets f∗F inherits

a canonical f∗ G-torsor structure induced by f∗(α) since f∗ preserves finite limits. We

obtain a morphism

f∗ : Tors
∼=(EtS ,G)→ Tors

∼=(EtX , f
∗ G),F 7→ f∗F .

We can check that the diagram

Tors
∼=(EtS ,G) Ȟ1(S,G)

Tors
∼=(EtX , f

∗ G) Ȟ1(X, f∗ G)

5.3

∼

f∗

5.3

∼

commutes where the second vertical morphism is induced by the morphisms

Č•({Ui → S}, µF ) : Č•({Ui → S},F)→ Č•({Ui → S}, f∗f∗ F) = Č•({Ui ×S X → X}, f∗ F)

for µ : 1 ⇒ f∗f
∗ the unit of the adjunction f∗ a f∗. Combined with remark 2.18, we

deduce the diagram

Tors
∼=(EtS ,G) H1

et(S,G)

Tors
∼=(EtX , f

∗ G) H1
et(X, f

∗ G)

5.3

∼

f∗

5.3

∼

to commute with the right vertical morphism of construction 2.17.

5.2 Second étale cohomology group

Lemma 5.8 (Kummer sequence). Let n ≥ 1 be invertible in X. Then,

n : O×X,et → O
×
X,et, s 7→ sn
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is an epimorphism of sheaves. We observe the sheaf of n-th roots of unity µn,X of

example 2.11 to be its kernel. In particular, we obtain a short exact sequence of abelian

sheaves

0→ µn,X → O×X,et → O
×
X,et → 0.

Proof. We prove surjectivity on stalks, i.e. we prove the induced map

nx̄ : (O×X,et)x̄ → (O×X,et)x̄

to be surjective for every geometric point x̄ at X. We can check that

(O×X,et)x̄ ∼= (OX,x̄)×

are canonically isomorphic as abelian groups. Thus, we may equivalently prove that

the canonical morphism

f : OX,x̄ → OX,x̄[t]/(tn − a), b 7→ b

splits for every a ∈ O×X,x̄. We observe n−1t(ntn−1)−(tn−a) = a ∈ OX,x̄[t]× to be a unit.

Thus, tn− a and its derivative ntn−1 jointly generate OX,x̄[t]. Hence, the above map is

étale by 2. of example 2.3. Furthemore, there exists a prime ideal in OX,x̄[t]/(tn − a)

over the maximal ideal of OX,x̄ since f is finite and étale. In particular, f splits by

proposition 3.22 since OX,x̄ is strictly henselian.

Proposition 5.9. Assume n ≥ 1 to be invertible in X. Then, the representing X-

scheme Spec
X

(OX [t]/(tn − 1)) of µn,x is étale. Furthermore, if X is a scheme over

some strictly henselian local ring (A,m, k) such that n is invertible in A, then, choosing

a primitive n-th root of unity in A induces an isomorphism

µn,X ∼= Z/n.

Proof. Similar to the proof of the prevous lemma we deduce SpecOX [t]/(tn − 1) to be

an étale X-scheme if n is invertible in X. Assume X to be an A-scheme. Observe tn−1

to be separable in k[t] since n ∈ k×. We deduce that tn − 1 ∈ k[t] splits into linear

factors since k is separably closed. Thus, tn − 1 ∈ A[t] splits into linear factors since A

is henselian. We obtain a canonical isomorphism

Spec(A[t]/(tn − 1)) ∼= tZ/n Spec(A)

by choosing a primitive n-th root of unity in A. In particular, base changing induces
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an isomorphism

Spec
X
OX [t]/(tn − 1) ∼= tZ/nX.

We deduce µn,X ∼= Z/n to be isomorphic as sheaves of abelian groups by using example

2.11.

Similar, we can proof the exactness of the Artin-Schreier sequence.

Lemma 5.10 (Artin-Schreier sequence). Let p be a prime number with p · 1 = 0 in X.

Then, the morphism

OX,et → OX,et, s 7→ sp − s

is an epimorphism in abelian sheaves on EtX . Furthermore, its kernel is isomorphic to

Z/p and we obtain a short exact sequence

0→ Z/p→ OX,et → OX,et → 0.

Proof. Proposition 7.2.3 in [2]

Using the Kummer and Artin sequence, we can get hands on the constant étale

sheaf Z/n. Here is an important example extending a result from cohomology of quasi-

coherent sheaves to étale cohomology.

Lemma 5.11. Let X/k be of finite type with k some separably closed field. Assume

that k has positive characteristic p. If X is proper over k, then,

Hq
et(X,Z/p) = 0

is zero for all q > dimX.

Proof. Theorem 7.2.11 in [2]

5.3 Cohomology of points and curves

The étale site of the spectrum of a field k is given by disjoint unions of spectra of

separably and finite field extension of k. Those are studied with Galois theory. Let us

briefly outline how étale cohomology generalizes Galois cohomology.

Remark 5.12. Let K/k be a finite Galois extension of fields and F be a sheaf of sets on

EtSpec(k). The canonical left-action of Gal(K/k) on K extends to a natural left-action

on F(Spec(K)) by functoriality. Choose a separable closure Ksep/k of k. By passing

to colimits, we obtain an action of Gal(Ksep/k) on

colimk⊂K⊂Ksep GaloisF(K)
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where the diagram is taken over all Galois extensions K of k contained in Ksep. The

choice of a separable closure Ksep/k corresponds to a geometric point

s̄ : Spec(Ksep)→ Spec(k).

Furthermore, we obtain a canonical isomorphism

colimk⊂K⊂Ksep F(K) ∼= F s̄

and, hence, an action of Gal(Ksep/k) on F s̄. This action is continuous with respect to

the discrete topology on F s̄.

Theorem 5.13. Let k be a field and choose a separable closure k ⊂ Ksep. This defines

a geometric point s̄ : Spec(Ksep) → Spec(k). Then, the assignement F 7→ F s̄ of the

previous remark defines an equivalence

Sh(EtSpec(k),Ab) ' Gal(Ksep/k)−Mod

where Gal(Ksep/k)−Mod denotes the category of discrete abelian groups equipped with

a continuous left action of Gal(Ksep/k). Furthermore, along this isomorphism the

functors Γ(Spec(k),−) and taking fixed points

(−)Gal(Ksep/k) : Gal(Ksep/k)−Mod→ Ab

agree. Therefore, we have a natural isomorphism

RΓ(Spec(k),F) ∼= R(F s̄)Gal(Ksep/k)

of étale cohomology of F and group cohmology of F s̄.

Proof. Proposition 5.7.8 in [2]

Here is an important theorem from Galois cohomology.

Theorem 5.14. Let K/k be a field extension of transcendental degree 1 with k separably

closed. Then, the group cohomology groups

1. H i(Gal(K
sep
/K), A) = 0 are zero for all i ≥ 2 and any torsion Gal(K

sep
/K)-

module A.

2. H i(Gal(K
sep
/K),K

sep×
) = 0 for i = 1 or i ≥ 3. Furthermore, if p is the charac-

teristik of K, then, H i(Gal(K
sep
/K),K

sep×
) is a p-torsion group.
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Proof. Theorem 4.5.11 in [2].

Let X be a scheme of dimension less or equal one and of finite type over a separably

closed field k. Then, X splits into the set of points s ∈ S with dim{s} = 1, denoted by

S ⊂ X and closed points X − S (i.e. points x ∈ X with dim{x} = 0). We can control

cohomology of both types of points:

1. The field extension κ(x)/k is finite for every x ∈ X − S. Thus, κ(x) is separably

closed. Hence, Γ(Spec(κ(x)),−) is an equivalence and all higher étale cohomology

groups of étale sheaves on Spec(κ(x)) vanish.

2. The field extension κ(s)/k is of transcendental degree 1 for every s ∈ S. Thus,

we can apply theorem 5.14.

Let F be an abelian sheaf on EtX . Define j to be the induced morphism

j : Spec(
∏
S

OX,s)→ X.

Observe that S is finite since X is noetherian. Thus,

Spec(
∏
S

OX,s) ∼=
∐
S

Spec(OX,s)

are isomorphic. Furthermore, the dimensions

dim(OX,s) = 0

are zero for all s ∈ S since dim{s} = dimX = 1. We deduce that

Spec(OX,s) = {s}

consists of a single element. Hence, j has topological image S. We relate Hq
et(X,F) to

the étale cohomology of F at points of S by the unit

µF : F → j∗j
∗F

of the adjunction j∗ a j∗.

Definition 5.15. Let Y be a scheme and F ∈ Sh(EtY ,Ab). We define the support of

F to be

supp(F) = {y ∈ Y | F ȳ 6= 0}.

Lemma 5.16. With the above notation, the following holds.
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1. The support of the kernel and of the cokernel of µF : F → j∗j
∗F are contained

in X − S for every abelian sheaf F on EtX .

2. The support of Rqj∗ G is contained in X−S for every G ∈ Sh(EtSpec(
∏

S OX,s),Ab)

and every q ≥ 1.

Proof. Lemma 7.2.5 in [2].

Here is a technical characterization classifying such sheaves.

Lemma 5.17. Assume Y to be a noetherian scheme and G to be an étale sheaf of

abelian groups on Y . Denote by T ⊂ Y the set of (Zariski) closed points. Then, the

following two conditions are equivalent:

1. supp(G) ⊂ T and

2. the canonical morphism G →
∏
T it∗i

∗
t G induces an isomorphism G ∼= ⊕T it∗i∗t G

for it : Spec(κ(t))→ Y the closed immersions.

Proof. Lemma 7.2.4 in [2].

Corollary 5.18. In the situation of the previous lemma, if supp(F) ⊂ T , then, Hq(Y,F)

is zero for all q ≥ 1.

Proof. We obtain G ∼= ⊕T it∗i∗t G by the previous lemma. Furthermore, every it is finite

since t ∈ T is closed and Y is noetherian. In particular, it∗ is exact by theorem 3.30.

Thus, we obtain a canonical isomorphism

Hq(Y, it∗i
∗
t G) ∼= Hq(Spec(κ(t)), i∗t G).

Recall sheaf cohomology to commute with finite direct sums. Combined, we obtain a

sequence of isomorphisms

Hq
et(Y,G) ∼= Hq

et(Y,⊕T it∗i∗t G) ∼= ⊕T Hq
et(Y, it∗i

∗
t G) ∼= ⊕T Hq(Spec(κ(t)), i∗t G).

We deduce κ(t) to be separably closed since k is and all κ(t)/k are finite field extensions.

In particular,

Hq(Spec(κ(t)), i∗t G) ∼= 0

is zero for all t ∈ T and q ≥ 1. We deduce the claim.

Definition 5.19. Let S be a scheme and F ∈ Sh(EtS,Ab) be a sheaf. We call F a

torsion sheaf if every stalk of F at a geometric point is a torsion abelian group. Because
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stalks commute with filtered colimits of sheaves, we easily deduce F to be a torsion

sheaf iff

F ∼= colimN(ker(F ·n→ F))

are canonically isomorphic.

Example 5.20. Every sheaf in the image of the canonical inclusion

Sh(EtS ,Z/n Mod) ⊂ Sh(EtS,Ab)

is a torsion sheaf for n > 0.

Combining all the above we can proof the following theorem.

Theorem 5.21. Let X be a scheme of finite type over a separably closed field k with

dimX ≤ 1. Then,

Hq
et(X,F) = 0

is zero for every torsion sheaf F on EtX and q > 2.

Proof. We use the notation of lemma 5.16. Given an abelian sheaf F on Xet, the unit

morphism µF : F → j∗j
∗F induces exact sequences

0→ ker(µF )→ F → im(µF )→ 0

0→ im(µF )→ j∗j
∗F → coker(µF )→ 0.

Then, Hq
et(X, coker(µF )) ∼= 0 and Hq

et(X, ker(µF )) ∼= 0 are zero for q > 0 by lemma 5.16

and corollary 5.18. We obtain an isomorphism

Hq
et(X,F) ∼= Hq

et(X, j∗j
∗F)

for q > 1 by the long exact sequence in cohomology. Thus, we may replace F by j∗j
∗F .

Consider the Leray spectral sequence

Epq2 = Hp
et(X,R

qj∗j
∗F)⇒ Hp+q

et (Spec(
∏
S

OX,s), j∗F) = Ep+q .

Recall, Rqj∗j
∗F to be the sheaf associated to

U 7→ Hq
et(Spec(

∏
S

OX,s)×X U, s∗F)

by lemma 1.34. We may replace X with Xred since this does not change the cohomology

groups by example 3.32 and corollary 3.36. Then, each OX,s is reduced and noethe-
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rian with a single prime ideal. We deduce each OX,s /k to be a transcendental field

extension of degree 1 for s ∈ S. Thus, every étale morphism U → Spec(
∏
S OX,s) =

tS Spec(OX,s) is given by a finite disjoint union of separable and finite field extensions

of the fields κ(s) for s ∈ S. Furthermore,

{Spec(OX,s)→ Spec(
∏
s∈S
OX,s)}S

is an étale covering. We obtain an isomorphism

Hq
et(Spec(

∏
S

OX,s),−) ∼= ⊕S Hq
et(Spec(OX,s),−)

by using the sheaf property. Combined with theorem 5.13 and theorem 5.14, we obtain

Hq
et(Spec(

∏
S

OX,s)×X U, s∗F) ∼= 0

and

Hq(Spec(
∏
S

OX,s), s∗F) ∼= 0

are zero for all q > 1 and U ∈ EtX . At last, we obtain Hp
et(X,R

qj∗j
∗F) ∼= 0 to be zero

for every p, q > 0 by lemma 5.16 and lemma 5.18. All together, we deduce that the

edge morphism in the above spectral sequence yields an isomorphism

Hp
et(X, j∗j

∗F) ∼= Hp
et(Spec(

∏
S

OX,s), s∗F) ∼= 0

for every q > 2.

We deduce the following theorem in a similar way by applying 2. of theorem 5.14.

Theorem 5.22. Let X be a reduced scheme over a separably closed field k of charac-

teristic p with dimX ≤ 1. Then, Hq
et(X,O

×
X,et) are p-torsion groups for q = 2, 3 and

zero for q ≥ 4.

Proof. Theorem 7.2.7 in [2].

Remark 5.23. We are tempted to use corollary 3.36 to get rid the assumption that X

is reduced in the previous theorem. However there is a small subtlety. Let p : Xred → X

be the canonical morphism. We obtain an isomorphism

Hq
et(X,O

×
X,et)

∼= Hq
et(Xred, p

∗O×X,et)
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by corollary 3.36. However, the canonical p∗O×X,et → O
×
Xred,et

is not an isomorphism in

general.

We can combine our restults with the Kummer sequence in order to obtain the

following corollary.

Corollary 5.24. Let X be a reduced scheme over a separably closed field k of character-

istic p with dimX ≤ 1. Let n ∈ N invertible in k. Then, the connecting homomorphism

H1
et(X,O×X,et)→ H2

et(X,µn,X)

in the long exact sequence associated to the Kummer sequence 5.8 is an epimorphism.

Proof. Theorem 7.2.9 in [2].
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6 Proper base change theorem

The proper base change theorem in topology relates the stalks of the higher direct

images to the higher cohomology groups of their fibres.

Theorem 6.1 (Proper base change in topology). Assume f : X → Y to be a proper

(i.e. universally closed) morphism of topological spaces. Let F be a sheaf of sets on X

and y ∈ Y . Denote by Xy the fibre of f over y and by F |Xy the inverse image of F
along the fibre Xy. Then, the canonical morphism

f∗Fy
∼−→ (F |Xy)(Xy)

is an isomorphism. Furthermore, the canonical morphism

(Rqf∗(F))y
∼−→ Hq(Xy,F |Xy)

is also an isomorphism for F an abelian sheaf and q ≥ 0.

Proof. Theorem 17.2 in [16]

Let f : X → S be a morphism of schemes and F an abelian sheaf on EtX . For every

geometric point s̄ : Spec(k)→ S we can construct a canonical morphism

(Rqf∗(F))s̄
∼−→ Hq

et(Xs̄,F |Ss̄). (1)

We want to prove that (1) is an isomorphism for f a proper morphism of schemes. To

address this claim we generalize the morphism (1) in a suitable sense. We will exhibit

many common morphisms to be instances of this general construction. The key insight

is that (1) extends to a natural transformation

D+(Sh(EtX, C)) D+(Sh(EtXs̄ , C))

D+(Sh(EtS, C)) D+(Ab)

|Ss̄

Rf∗ RΓ(Xs̄,-)

(-)s̄

.

6.1 Generalized base change

Let

A1 A2

A3 A4

L1

L4

L2 L3
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be a square of functors. Assume L2 resp. L3 to admit a right adjoint R2 resp. R3.

Denote by µi resp. εi the unit resp. counit of the adjunction Li a Ri. We construct

two morphisms by the following assignment.

HomFun(L3 ◦ L4, L1 ◦ L2)↔HomFun(L4 ◦R2, R3 ◦ L1) (2)

A1 A2 A1 A1 A2 A4

A3 A4 A1 A3 A4 A4

A3 A1 A2 A2 A1 A2

A3 A3 A4 A2 A3 A4

L1 L1 R3

L4

L2 L3 7→

R2

L4

L2ε2
L3 µ3

L2 L1

R2 R3

L1

R2 R3
µ2

L4 L3

ε3

L4

←[

Similarly, let

A1 A2

A3 A4

R2 R3

R1

R4

be a square of functors such that R1 resp. R4 admits a left adjoint L1 resp. L4. Denote

by µi resp. εi the unit resp. counit of the adjunction Li a Ri. Define two morphisms

by the assignment

HomFun(R2 ◦R1, R4 ◦R3)↔HomFun(L4 ◦R2, R3 ◦ L1) (3)
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A1 A1

A1 A2 A1 A2

A3 A4 A3 A4

A2 A2 A4 A4

A1 A2 A1 A2

A3 A4 A3 A4

A3 A3

µ1
L1

R2 R3

R1

7→ R2 R3

R1

R4

L4
ε4

R4

R1

L1

R2

ε1

R3

L1

R2 R3

L4

R4

L4

←[

µ4

Lemma 6.2. The natural morphisms (2) and (3) are pairwise inverses. Furthermore,

given a square of functors

A1 A2

A3 A4

L1

L4

L2 L3

such that each Li admits a right adjoint Ri, we obtain an induced bijection

HomFun(L3 ◦ L4, L1 ◦ L2)
∼−→ HomFun(R2 ◦R1, R4 ◦R3) (4)

Then, α ∈ HomFun(L3 ◦ L4, L1 ◦ L2) corresponds to β ∈ HomFun(R2 ◦ R1, R4 ◦ R3) iff

the induced diagram

Hom(L3 ◦ L4−,−) Hom(−, R4 ◦R3−)

Hom(L1 ◦ L2−,−) Hom(−, R2 ◦R1−)

∼
φ

∼

α∗

ψ

β∗

commutes with the horizontal arrows induced by the adjunctions L3 ◦L4 a R4 ◦R3 and

L1 ◦ L2 a R2 ◦R1.

Proof. We only proof one direction of (2). The other parts follow with almost identical
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arguments. Let

A1 A2

A3 A4

L1

L2

L4

L3

be a natural transformation. The composition in question is given by

A2 A2

A1 A1 A2 A4

A1 A3 A4 A4

A3 A3

L1

R3

L3ε3

R2

L2

L4

ε2
L3 µ3

L2 µ2

.

We obtain equalities

A2 A2

A1 A1 A1 A2 A4 A2

A3 A1 A3 A4 A4 A4

A3 A3

R3

L3ε3

L2 =

R2

L2ε2
L3 µ3

= L3

L2 µ2

by the triangle conditions for adjoint functors. This proves

A2 A2

A1 A1 A2 A4 A1 A2

A1 A3 A4 A4 A3 A4

A3 A3

L1

R3

L3ε3
L1

R2

L2

L4

ε2
L3 µ3

= L2

L4

L3

L2 µ2

to be equal. Let us prove the second claim. We convince ourselves that the bijection in
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(4) is given by (2) applied to the diagram

A2 A2

A1 A4

A3 A3

L1 L3

L2 L4

resp. (3) applied to the diagram

A3 A1 A2

A3 A4 A2

R2

R1

R4 R3

.

By Yoneda’s Lemma, the diagram in question commutes iff

β(A) = φ ◦ α∗ ◦ ψ−1(idR2◦R1(A))

are equal for every A ∈ A2. A straightforward calculation proves the right hand side

to be given by the image of α under (4) applied to A. The other direction follows by

similar arguments.

Example 6.3. Let

A1 A2

A3 A4

L1

L4

L2 L3

be a commutative (up to natural isomorphism) square of functors such that each Li

admits a right adjoint Ri. We obtain a natural isomorphism of the diagram of right

adjoints corresponding to the commutativity under the bijection (4). Then, the natural

transformation

A1 A2

A3 A4

R2

L1

R3

L4

induced by (2) resp. by (3) are the same.

Example 6.4. Let L : A → B be a functor with right adjoint R. Then, the natural
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transformation corresponding to the identity

A B

A A

L

L

yields the unit and to the identity

B B

A B
R

R

yields the counit.

Proposition 6.5. Let

A1 A2 A5

A3 A4 A6

L1 L5

L4

L2

L6

L3 L7

be two natural transformations such that each L2, L3 and L7 admits a right adjoint

R2, R3 and R7. We obtain an induced natural transformation

A1 A2 A5

A3 A4 A6

L1 L5

L4

L2

L6

L7
.

Then, the composition

A1 A2 A5

A3 A4 A6

R2

L1

R3

L5

R7

L4 L6

and

A1 A2 A5

A3 A4 A6

L1

R2

L5

R7

L4

L6

corresponding under the bijection (2) to the upper natural transformations agree.
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Proof. The composition in question is given by

A2 A2 A5 A6

A1 A1 A2 A4 A6 A6

A1 A3 A4 A4

L5 R7

L1 R3

L3

L6

ε3
L7 µ7

R2

L2

L4

ε2
L3 µ3

.

We need to prove that

A2 A2

A2 A4

A4 A4

R3

L3ε3

L3 µ3

and
A2

A4

L3

agree. This is part of the triangle conditions for adjoint functors.

Proposition 6.6. Let

A1 A2

A3 A4

A5 A6

L1

L2

L4

L3

L5

L7

L6

be two natural transformations such that each L2, L3, L5, L6 admit right adjoints R2, R3, R5, R6.

We obtain an induced natural transformation

A1 A2

A3 A4

A5 A6

L1

L2 L3

L5

L7

L6

.
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Then, the composition

A1 A2

A3 A4

A5 A6

L1

R2 R3

L4

R5 R6

L7

and

A1 A2

A3 A4

A5 A6

L1

R2 R3

R5 R6

L7

corresponding under the bijection (2) to the upper natural transformations agree.

Proof. The composition in question is given by

A1 A1 A2 A4 A6

A3 A3 A4 A4

A1 A3 A5 A6 A6

L1 R3 R6

ε2
L2

L4

L3 µ3

R2 R5

L5

L7

ε5
L6 µ6

.

We need to prove that

A1 A1 A2 A4 A6

A3 A3 A4 A4

A1 A3 A5 A6 A6

R3 R6

ε2
L2

resp.

L3 µ3

R2 R5

L5ε5
L6 µ6

is the counit resp. unit of L2 ◦ L5 a R5 ◦ R2 resp. L3 ◦ L6 a R6 ◦ R3. This is well

known.

Remark 6.7. The corresponding claims for squares of right adjoints as in (3) is proved

with almost identical arguments.
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Corollary 6.8. Let

A1 A2 A5

A3 A4 A6

L1 L5

L4

L2

L6

L3 L7

be natural transformations as in proposition 6.5. We obtain three natural transforma-

tions

A1 A2

A3 A4 A6

R2

L1

R3

L4 L6

A1 A2 A5

A4 A6

L1

R3

L5

R7

L6

A1 A2 A5

A3 A4 A6

L1

R2

L5

R7

L4

L6

under the bijection (2). If two of them are isomorphisms, then, so is the third. The

corresponding claim for the vertical composition

A1 A2

A3 A4

A5 A6

L1

L2

L4

L3

L5

L7

L6

is also true.

Corollary 6.9. Let

A1 A2

A3 A4

R2 R3

R1

R4

be a natural transformation such that R2 resp. R4 admits a left adjoint L2 resp. L4.

Let E : A4 → A5 be an equivalence of categories. Then, its corresponding natural

transformation under (2)

A1 A2

A3 A4

R2

L1

R3

L4
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is an isomorphism iff the natural transformation

A1 A2

A3 A5

R2

L1

E◦R3

E◦L4

corresponding to the outer square of

A1 A2 A2

A3 A4 A5

R2 R3

R1

E◦R3

R4

∼=

E−1

is an isomorphism.

Proposition 6.10. Let

A1 A2

A3 A4

R2 R3

R1

R4

be a morphism of functors such that R2 resp. R4 admits a left adjoint L2 resp. L4.

Denote by µ1 the unit of the adjunction L1 a R1 and by ε4 the counit of the adjunction

L4 a R4. If two of the natural transformations

A1 A1 A1

A1 A2 A1 A2 A2

A3 A3 A4 A3 A4

A4 A4 A4

µ1
L1 L1

R2

R1

R2

R1

R3 R3

L4

R4

L4
ε4

R4

are isomorphisms, then, the third is an isomorphism iff the morphism corresponding to

A1 A2

A3 A4

R2 R3

R1

R4

under bijection (3) is an isomorphism. The corresponding claim for the case of left

adjoints and bijection (2) is also true.
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Proof. This is true by definition.

Lemma 6.11. Let α : A → B be an exact functor and β a right adjoint of α. Assume

A and B to have enough injective objects. Then, α : D+A → D+ B is a left adjoint of

Rβ : D+ B → D+A.

Proof. Denote by K+A resp. K+ B the category of left bounded chain complexes

modulo chain homotopy. Applying α resp. β pointwise induces an adjoint pair

α : K+A ↔ K+ B : β.

Recall the universal lB : K+ B → D+ B to admit a right adjoint I : D+ B → K+ B
which maps a complex to an injective resolution. Let C ∈ K+A and D ∈ K+ B be

bounded below chain complexes. We obtain a sequence of natural isomorphisms

HomD+ B(αC,D) ∼= HomD+ B(αC, I(D)) D ∼= I(D) in D+ B
∼= HomK+ B(αC, I(D)) lB a I
∼= HomK+A(C, βI(D)) α a β
∼= HomD+A(C, βI(D)) β preserves injective objects and is exact

∼= HomD+A(C,RβD) by construction of Rβ

where we omitted lB because it is the identity on objects.

Remark 6.12. Let

A1 A2

A3 A4

L1

L4

L2 L3

be a natural transformation. Assume all Ai to be abelian and L2 resp. L3 to admit

right adjoints R2 resp. R3. Assume further that all Ai have enough injective objects

and all Li are exact. Then, all right derived functors of Li are given by pointwise

applying Li. We obtain a natural transformation

D+A1 D+A2

D+A3 D+A4

L1

L4

L2 L3
.

By the previous lemma, L2 : D+A3 → D+A1 resp. L2 : D+A3 → D+A1 are left

adjoint to RR2 and RR3. Therefore, the above square corresponds to a natural trans-
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formation

D+A1 D+A2

D+A3 D+A4

L1

RR2 RR3

L4

β

under bijection (2). Here is an explicit calculation. Given a bounded below complex

K• in A1, choose quasi-isomorphisms

a : K• → I• and b : L1I
• → J•

with I• and J• complexes of injectve objects. Observe that

b ◦ L1(a) : L1K
• → L1I

• → J•

is a quasi-isomorphism since L1 is exact. The natural transformation

A1 A2

A3 A4

R2

L1

R3

L4

α

corresponding to the natural transformation

A1 A2

A3 A4

L1

L4

L2 L3

induces a morphism L4 ◦ R2(I•) → R3 ◦ L1(I•) by pointwise application. At the level

of derived categories we obtain a morphism

L4 ◦ RR2(K•)
∼−→ L4 ◦R2(I•)→ R3 ◦ L1(I•)

R3(b)→ R3(J•)
∼← RR3 ◦ L1(K•).

We can check that this construction pointwise agrees with β. We call the natural

transformation β the derived version of α.
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Example 6.13. Let f : X → S be a morphism of schemes and F ∈ Sh(EtS,Set) be a

sheaf. By the very construction, the natural transformation

Γ(S, -)→ Γ(X, f∗−) ∼= Γ(S, f∗f
∗−)

corresponding to

Sh(EtS, C) Sh(EtX, C)

C C

Γ(S,-)

f∗

Γ(X,-)

is given by the unit of the adjunction f∗ a f∗. Furthermore, for F ∈ Sh(EtS, Λ Mod)

the derived version induces a morphism

Hq(S,F)→ Hq(X, f∗F)

which agrees with the morphism of construction 2.17.

With the developed compatibility results on hand we can prove remark 2.18.

Corollary 6.14. Let f : X → S be a morphism of schemes and F ∈ Sh(EtS,Ab) be

an abelian sheaf. Denote by µ : 1⇒ f∗f
∗ the unit of the adjunction f∗ a f∗ and by

ιS : PSh(EtS ,Ab) ⊂ Sh(EtS,Ab) and ιX : PSh(EtX ,Ab) ⊂ Sh(EtX,Ab)

the respective inclusions. Then, the diagram

Ȟ1(S,F) H1
et(S,F)

Ȟ1(X, f∗F) H1
et(X, f

∗F)

∼

α β

∼

with vertical isomorphisms of corollary 1.44, β the morphism of construction 2.17 and

α induced by the family of morphisms

Č•({Ui → S}, µF ) : Č•({Ui → S},F)→ Č•({Ui → S}, f∗f∗ F) ∼= Č•({Ui ×S X → X}, f∗ F)

commutes.

Proof. For the sake of clarity, we give only a sketch of the proof and leave some claims
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to the reader. We consider the following diagram of functors

Sh(EtS,Ab) Sh(EtX,Ab)

D+ Sh(EtS,Ab) D+ Sh(EtX,Ab)

PSh(EtS,Ab) PSh(EtX,Ab)

D+ PSh(EtS,Ab) D+ PSh(EtX,Ab)

D+ Ab D+ Ab

Ab Ab

ιS

f∗

ιXf∗

f∗PRιS

RȞ0(S,−)

f∗P

RȞ0(X,−)

RιX

H1(−) H1(−)

with oblique arrows the canonical ones. Observe the top and bottom of the “cube” to

be commutative. We convince ourselves that α is given by

Sh(EtS,Ab) Sh(EtX,Ab)

PSh(EtS,Ab) PSh(EtX,Ab)

D+ PSh(EtS,Ab) D+ PSh(EtX,Ab)

D+ Ab D+ Ab

Ab Ab

ιS

f∗

ιX

	

f∗P

RȞ0(S,−)

f∗P

RȞ0(X,−)

H1(−) H1(−)
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and β is given by

Sh(EtS,Ab)

D+ Sh(EtS,Ab) D+ Sh(EtX,Ab)

D+ PSh(EtS,Ab) D+ PSh(EtX,Ab)

D+ Ab D+ Ab

Ab Ab

RιS

f∗

RιX

RȞ0(S,−)

f∗P

RȞ0(X,−)

H1(−) H1(−)

with natural transformations induced by the commutative diagram

Sh(EtS,Ab) Sh(EtX,Ab)

PSh(EtS,Ab) PSh(EtX,Ab)

Ab Ab

ιS

Γ(S,-)

ιX

Γ(X,-)

f∗

Ȟ0(S,−) Ȟ0(X,−)

f∗

.

The isomorphisms

Ȟ1(S, ιS(−))→ H1
et(S,−) resp. Ȟ1(X, ιX(−))→ H1

et(X,−)

in corollary 1.44 are given by the canonical natural transformation

Sh(EtS,Ab) Sh(EtX,Ab)

PSh(EtS,Ab) D+ Sh(EtS,Ab) D+ Sh(EtX,Ab) PSh(EtX,Ab)

D+ PSh(EtS,Ab) D+ PSh(EtX,Ab)

D+ Ab D+ Ab

Ab Ab

ιS ιX

RιS

resp.

RιX

RȞ0(S,−) RȞ0(X,−)

H1(−) H1(−)

.
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We deduce the composition

Sh(EtS,Ab)

PSh(EtS,Ab) D+ Sh(EtS,Ab) D+ Sh(EtX,Ab)

D+ PSh(EtS,Ab) D+ PSh(EtX,Ab)

D+ Ab D+ Ab

Ab Ab

ιS

RιS

f∗

RιX

RȞ0(S,−)

f∗P

RȞ0(X,−)

H1(−) H1(−)

and the composition

Sh(EtS,Ab) Sh(EtX,Ab)

PSh(EtS,Ab) PSh(EtX,Ab) D+ Sh(EtX,Ab)

D+ PSh(EtS,Ab) D+ PSh(EtX,Ab)

D+ Ab D+ Ab

Ab Ab

ιS

f∗

ιX

	

f∗P

RιX

RȞ0(S,−)

f∗P

RȞ0(X,−)

H1(−) H1(−)

to agree by using the compatibility results of propositions 6.5 and 6.6 By using the

above considerations, we derive the commutativity of the diagram in question.

6.2 Base change maps

For the rest of this section, we denote by

X ′ X

S′ S

d2

r2

d1

r1

(5)
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a commutative diagram of schemes. Let C be either Set, Ab or Λ Mod for Λ some

commutative ring. We obtain a square of right adjoints

Sh(EtX, C) Sh(EtX′ , C)

Sh(EtS, C) Sh(EtS′ , C)

d1∗

r2∗

d2∗

r1∗

.

There exist canonical isomorphisms

d1∗ ◦ r2∗
∼−→ r1∗ ◦ d2∗

and

r2∗ ◦ d1∗
∼←− d2∗ ◦ r1∗

corresponding to the commutivity of the above diagram and to each other under bi-

jection (4). Then, under bijection (3) resp. (2) those isomorphisms correspond to the

same natural transformation

Sh(EtX, C) Sh(EtX′ , C)

Sh(EtS, C) Sh(EtS′ , C)

r2∗

d1∗ d2∗

r1∗

(6)

which we call base change map. In the case of C = Ab, Λ Mod, we obtain also a derived

version

D+ Sh(EtX, C) D+ Sh(EtX′ , C)

D+ Sh(EtS, C) D+ Sh(EtS′ , C)

r2∗

Rd2∗ Rd1∗

r1∗

(7)

by remark (6.12) which we call cohomological base change map or also base change map

if it is clear from the context which we are referring to.

Remark 6.15. Recall (7) be given by the composition

r1∗ ◦Rd2∗(K
•)

∼−→ r1∗ ◦ d2∗(I
•)→ d1∗ ◦ r2∗(I•)

d1∗(b)→ d1∗(J
•)
∼← Rd1∗ ◦ r2∗(K•)

for K• a bounded below complex, a : K• → I• and b : r2∗I• → J• quasi-isomorphisms

to complexes of injective sheaves and r1∗ ◦ d2∗(I
•) → d1∗ ◦ r2∗(I•) induced by (6). If

(6) is an isomorphism, then, the following are equivalent.

1. (7) yields an isomorphism.

2. r2∗ takes acyclic injective bounded below complexes to d1∗-acyclic complexes.
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3. r2∗ takes injective sheaves to d1∗-acyclic objects.

Example 6.16. Consider a cartesian diagram of schemes

X ′ X

Spec(k) S

r2

d2 d1

r1

with

r1 : Spec(k)→ S

a geometric point. Then,

Γ(Spec(k),−) : Sh(EtSpec(k), C)→ C

is an equivalence of categories. The base change map yields a natural transformation

Sh(EtX, C) Sh(EtX′ , C)

Sh(EtS, C) C

r2∗

d1∗ Γ(X′,-)

(-)s̄

using the compatibility of corollary 6.9. We convince ourselves that the counit associ-

ated to the left adjoint (−)s̄ is an isomorphism. A precise writing out of the definition

shows the base change map pointwise

(d1∗F)s̄ = colimU∈NEts̄ F(U ×S X)→ r2∗F(X ′)

to be induced by the family of units

F(U ×S X)→ f∗ ◦ f∗(F)(U ×S X) ∼= r2∗F(X ′)

for each U ∈ NEts̄ and induced factorizations

X ′ U ×S X

X

f

r2
g

.

Observe that we ommitted g∗ since it is the restriction. In particular, for C = Ab, Λ Mod,

the morphism on cohomology (7) yields the canonical morphism

(Rqd2∗F)s̄ = colimU∈NEts̄ Hq
et(U ×S X, g∗F)→ Hq

et(X
′, r2∗F)
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induced by the family

Hq
et(U ×S X, g∗F)→ Hq

et(X
′, r2∗F)

of example 6.13.

Example 6.17. Consider the cartesian square of schemes

X0 X

Spec(k) Spec(A)

r2

d2 d1

r1

with (A,m) a strictly henselian local ring and r1 = m̄ a geometric point at m. In that

case, the trivial étale neighbourhood Spec(A) is initial in NEtm̄. Combined with the

previous example we identify the base change map resp. the cohomological base change

map pointwise with

Γ(X,F)⇒ Γ(X0, r2
∗F) resp. Hq(S,G)→ Hq(X, f∗ G) (8)

of example 6.13.

Example 6.18. Consider a cartesian diagram of schemes

Xs̄ X

Spec(OS,s̄) S

r2

d2 d1

r1

with C = Ab, Λ Mod, S and d1 quasi-compact and quasi-seperated and s̄ : Spec(k)→ S

a geometric point. The base change map is

Sh(EtX, C) Sh(EtXs̄ , C)

Sh(EtS, C) Sh(EtSpec(OS,s̄), C)

r2∗

d1∗ d2∗

r1∗

.

Observe

(−)s̄ ◦ d2∗ ∼= Γ(Xs̄,−)

to be isomorphic by using corollary 3.24. Furthermore, Spec(OS,s̄) is the cofiltered

limit of étale neighbourhoods of s̄ which are in addition of finite presentation over S

and affine by using that étale morphisms are locally given by such maps. We denote

this full subcategory by NEtaff,fps̄ ⊂ NEts̄. Similar to example 6.16, we deduce the
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stalk at s̄ of the base change map

(d1∗F)s̄ = colim
U∈NEtaff,fps̄

F(U ×S X)→ r2∗F(Xs̄)

to be induced by the family of units of f∗ a f∗

F(U ×S X)→ f∗ ◦ f∗(F)(U ×S X) = r2∗F(Xs̄)

for each U ∈ NEtaff,fps̄ and induced factorizations

Xs̄ U ×S X

X

f

r2
g

.

Furthermore, the cohomological base change map

(Rqd1∗F)s̄ = colimU∈NEts̄ Hq
et(U ×S X, g∗F)→ Hq

et(Xs̄, r2
∗F)

is induced by the family

Hq
et(U ×S X, g∗F)→ Hq

et(Xs̄, r2
∗F).

6.3 Base change theorems

In this section we prove certain base change maps to be isomorphisms.

Example 6.19. Assume we are in the situation of example 6.18. Then, after composing

with the stalk functor at s̄ the base change map

(d2∗F)s̄ → r2∗F(Xs̄)

and the cohomological base change map

(Rqd2∗F)s̄ → Hq
et(Xs̄, r2

∗F)

are isomorphisms by the identification in example 6.18 and examples 2.53 and 2.59.

Example 6.20. Let

X ′ X

S′ S

d2

r2

d1

r1



6 Proper base change theorem 97

be a cartesian diagram of schemes with r1 purely inseparable. Then, r2 is purely

inseparable by remark 3.33 and its adjoint pairs of direct and inverse image functors

define pairwise equivalences of categories by lemma 3.35. Thus, the base change map

as well as the cohomologcial base change map are isomorphisms by corollary 6.10.

Example 6.21. Consider a cartesian diagram of schemes

V X

U S

r2

d2 d1

r1

with r1 (then r2) étale. In that case, r1∗ (and r2∗) are the canonical restrictions. The

counit r1∗ ◦ r1∗ ⇒ 1 is an isomorphism and the unit yields isomorphisms

F(W )→ r2∗r2
∗F(W )

for every étale W/X factoring over r2. In particular, the unit of r2∗ a r2∗ is an isomor-

phism after applying r1∗ ◦ d1∗. We deduce the base change map to be an isomorphism

by corollary 6.8. Assume C to be either Ab or Λ Mod. We check r2∗ to preserve flasque

sheaves In particular, r2∗ turns injective sheaves into d1∗-acyclic sheaves. Combined

with remark 6.15, the cohomological base change map is an isomorphism.

Theorem 6.22 (Proper base change theorem). Let

X ′ X

S′ S

d2

r2

d1

r1

be a cartesian square of schemes with d1 proper. Then,

1. the base change map (6)

r1∗ ◦ d1∗ ⇒ d2∗ ◦ r2∗

is an isomorphism for C = Set (hence, for C = Ab, Λ Mod).

2. the cohomological base change map (7)

r1∗ ◦Rd1∗ ⇒ Rd2∗ ◦ r2∗

is an isomorphism for C = Λ Mod and Λ = Z/n, n > 0.
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3. the cohomological base change map (7)

r1∗ ◦Rd1∗(K
•)→ Rd2∗ ◦ r2∗(K•)

is an isomorphism for K• a bounded below complex of torsion sheaves.

Remark 6.23. We observe 2. of the proper base change theorem to be a special case

of 3. since every sheaf of Z/n-modules for n > 0 is in particular a torsion abelian sheaf

and the étale cohomology of some sheaf of Z/n-modules agrees with its cohomology

as an abelian sheaf. We will later prove that the converse is also true by using the

compatibility of cohomology with filtered colimits.

Lemma 6.24. We may reduce to complexes concentrated in degree 0 in 2. and 3. of

the proper base change theorem. In particular, we need to prove the induced morphism

r1∗ ◦Rqd1∗F → Rqd2∗ ◦ r2∗F

to be an isomorphism for every torsion sheaf F and q ≥ 0.

Proof. By the previous remark, it suffices to prove the claim for 3. This is contained in

the proof of [10, Tag 0DDE]

6.4 Proof of the proper base change theorem

6.4.1 Summary

The proof of the proper base change theorem is based on a long sequence of reductions.

In order to maintain an overview, we give a short summary here.

The first sequence of reductions mainly rests on the compatibility results given in

proposition 6.5 and corollary 6.8. We reduce to

S and S′ being affine

by choosing open affine coverings of S resp. S′ and by using that the base change

theorem is an isomorphism if r1 is étale. This allows us to apply the compatibility

results with filtered colimits from section 2.8 since affine schemes are quasi-compact

and quasi-separated. We reduce to

r1 being of finite type

by writing r1 as a cofiltered limit of such morphisms. This allows us to reduce to

https://stacks.math.columbia.edu/tag/0DDE


6 Proper base change theorem 99

proving the bijectivity on stalks at points closed in their fibre. We reduce to

r1 being a geometric point with induced field extension being a separable closure.

We may apply example 6.18 to reduce to

r1 being given by the quotient map at the closed point of a strictly henselian ring.

by using that r1 factorizes through its étale stalk. Then, the base change map is given

as in example 6.17. By using that every torsion sheaf is a filtered colimit of sheaves of

Z/n-modules for n > 0, we apply theorem 2.43 to reduce from arbitrary torsion sheaves

to Z/n-sheaves. In particular,

2. of the proper base change theorem implies 3.

We give a proof of 1. of the proper base change theorem without further reduction. Fur-

thermore, since every ring is a filtered colimit of Z-algebras of finite type, in particular

noetherian rings, we reduce to

S being in addition noetherian.

Then, we can apply remark 6.15 to

reduce from isomorphism to epimorphism in 2. of theorem 6.22.

We use Chow’s Lemma to assume that

d1 is projective.

We reduce further to

X ′ having dimension lower or equal 1

by dropping the projectiveness assumption. Based on our considerations in section 2.5,

we

reduce from arbitrary Z/n-sheaves to the constant Z/n-sheaf Z/n.

This is what we call the core case. To prove the core case we use our results on the

cohomology of curves developed in chapter 5 and the results sketched in chapter 4.
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6.4.2 Reductions

Fix a cartesian diagram of schemes

X ′ X

S′ S

d2

r2

d1

r1

with d1 proper. For the sake of clarity, we make a few conventions.

1. We will use the reduction from arbitrary complexes to complexes concentrated in

degree zero of lemma 6.24 without further mentioning.

2. Observe forgetting the Λ-module structure

Sh(EtX, Λ Mod)→ Sh(EtX,Ab)

to be exact and to preserve flasque sheaves. For Λ = Z/n, the forgetful func-

tor Z/n Mod ⊂ Ab is in addition fully faithful. Therefore, given some sheaf

F ∈ Sh(EtX ,Z/n Mod) ⊂ Sh(EtX ,Ab), we will not distinguish its respective coho-

mology groups as a sheaf of Z/n-modules and as a sheaf of abelian groups.

3. We will use that torsion sheaves are preserved under inverse image functors and

that the base change of a proper morphism is again proper without further men-

tioning.

4. Occasionally we identify the inverse image functor with another functor along an

equivalence of categories. In this case we use the compatibility of 6.9 without

further mentioning.

Lemma 6.25. In the situation of the proper base change theorem, we may reduce to S

being affine.

Proof. Let {Ui ⊂ S}i∈I be an affine open covering. Then, the induced family {U ′i =

Ui ×S S′ ⊂ S′}i∈I is an étale covering. In particular, the base change map resp. co-

homological base change map is an isomorphism iff it is an isomorphism restricted to

every Sh(EtU ′i ,Set) resp. D+ Sh(EtU ′i ,Ab). We give only a proof for the base change

map. We derive the claim for the cohomological base change map with almost identical
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arguments. We obtain a commutative cube

V ′i Vi

X ′ X

U ′i Ui

S′ S

r2

d1

r1

d2

with each face cartesian and each vertical arrow proper. This yields base change maps

Sh(EtX , C) Sh(EtVi , C) Sh(EtV ′
i
, C) Sh(EtX , C) Sh(EtX′ , C) Sh(EtV ′

i
, C)

Sh(EtS , C) Sh(EtUi , C) Sh(EtU′
i
, C) Sh(EtS , C) Sh(EtS′ , C) Sh(EtU′

i
, C)

.

Observe their respective compositions to agree by corollary 6.5. Then, all base change

maps except

Sh(EtX , C) Sh(EtX′ , C)

Sh(EtS , C) Sh(EtS′ , C)

are isomorphisms by example 6.21 and by assumption. Thus, the natural transformation

Sh(EtX , C) Sh(EtX′ , C)

Sh(EtS , C) Sh(EtS′ , C) Sh(EtU ′i , C)

with Sh(EtS′ , C)→ Sh(EtU ′i , C) being the restriction is an isomorphism by corollary 6.8.

This proves the claim.

Lemma 6.26. In the situation of the proper base change theorem, we may reduce to S

and S′ being affine.

Proof. We may assume S to be affine by the previous lemma. Let {Ui ⊂ S′}i∈I be an

affine open covering. The (cohomological) base change map is an isomorphism iff it is
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restricted to all EtUi . We obtain a commutative diagram

Vi X ′ X

Ui S′ S

r2

d2 d1

r1

with both squares cartesian for every i ∈ I. The (cohomological) base change map

corresponding to the left square is an isomorphism by example 6.21 since Ui → S′

is étale. The (cohomological) base change map corresponding to the outer square is

an isomorphism by assumption. Thus, the (cohomological) base change map is an

isomorphism after postcomposing with (Ui → S′)∗ by corollary 6.8.

Lemma 6.27. In the situation of the proper base change theorem, we may reduce to

S, S′ being affine and r1 being of finite type.

Proof. We may assume both S = Spec(A) and S′ = Spec(B) to be affine by the previous

lemma. Then, we may apply the results of section 2.8 since affine schemes are quasi-

compact and quasi-separated. Define (fi : Bi → B)I to be a filtered colimit cocone of A-

algebras with each Bi being a finite type A-algebra. Then, (Fi : S′ → Si = Spec(Bi))Iop

is a cofiltered limit cone. We obtain a commutative diagram

X ′ Xi X

S′ Si S

Gi

d2

r2

Hi

di d1

Fi

r1

Li

with each square cartesian. The (cohomological) base change map induced by the

right square is an isomorphism for all i by assumption. It suffices to prove that the

(cohomological) base change map of the outer square is an isomorphism after applying

Γ(U,−) resp. RΓ(U,−) for every U ∈ EtfpS′ . We will give a proof for the base change

map.

There exists some i0 ∈ I and Ui0 ∈ EtfpSi0
with

U ∼= Ui0 ×Si0
S

by corollary 2.30. Let F be a sheaf of sets on EtS . Define for i ∈ Iop/i0

Ui = Ui0 ×Si0
Si and Vi = Ui ×Si Xi and V = U ×S X
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to be the respective pullbacks. The units of the adjunctions F ∗i a Fi∗ resp. G∗i a Gi∗
induce colimit cocones

(fi(Ui) : L∗i ◦ d1∗F(Ui)→ Fi∗ ◦ F ∗i ◦ L∗i ◦ d1∗F(Ui) ∼= r1∗ ◦ d1∗F(U))i0/I

resp.

(gi(Vi) : H∗i F(Vi)→ Gi∗ ◦G∗i ◦H∗i F(Vi) ∼= r2∗F(V ))i0/I

by example 2.53. Observe fi(Ui) resp. gi(Vi) to be the base change map corresponding

to the lower resp. outer square of

Sh(EtXi , C) Sh(EtX′ , C)

Sh(EtSi , C) Sh(EtS′ , C)

C C

di,∗

G∗i

Γ(Vi,−)

d2∗

Γ(V,−)

F ∗i

Γ(Ui,−) Γ(U,−)

applied to L∗i ◦ d1∗F resp. H∗i F by example 6.13. We consider the following diagram.

Sh(EtX , C) Sh(EtXi , C) Sh(EtX′ , C)

Sh(EtS , C) Sh(EtSi , C) Sh(EtS′ , C)

C C

H∗i

d1∗ di,∗

G∗i

d2∗

L∗i F ∗i

Γ(Ui,−) Γ(U,−)

(9)

The base change map of the upper left square of (9) is an isomorphism by assumption.

By using proposition 6.5 and proposition 6.6 applied to (9) we deduce the square

L∗i ◦ d1∗F(Ui) r1∗ ◦ d1∗F(U)

H∗i F(Vi) r2∗F(V )

fi(Ui)

∼=

gi(Vi)

where the left vertical morphism is induced by the base change map of the upper left

square and the right vertical arrow is induced by the base change map in question to

commute. Observe the left vertical morphism to be an isomorphism by assumption.

We deduce the base change map in question

r1∗ ◦ d1∗F(U)→ r2∗F(V ) ∼= d2∗ ◦ r2∗F(U)
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to be an isomorphism since the maps fi(Ui) and gi(Vi) induce colimit cocones. This

proves the claim for the base change map. We can prove the claim about the cohomo-

logical base change map with the same arguments replacing example 2.53 by example

2.59.

Recall the following well known fact.

Lemma 6.28. Let f : Y → Spec(k) be a scheme of finite type over a field k. Then,

the set of closed points is dense in Y .

Corollary 6.29. Let f : Y → T be a finite type morphim of schemes. A morphism

F → G of étale sheaves of sets (hence of abelian groups or modules) on EtY is an

isomorphism iff it is on stalks for every point y ∈ Y closed in its fibre, i.e. closed in

Y ×T Spec(κ(f(y))).

Proof. We only give a sketch of the proof leaving some claims to the reader. First,

we observe the set of points of Y closed in their fibre to be dense in Y by using the

previous lemma. Let U be an étale Y -scheme and s be an element of ker(F → G)(U).

We need to prove that s becomes zero restricted to an étale covering of U . The image of

s becomes zero at the stalks of a dense subset of U by assumption. Thus, there exists a

family of étale morphisms {fi : Ui → U}i∈I such that s becomes zero in ker(F → G)(Ui)

for every i and ∪Ifi(Ui) ⊂ U contains a dense subset. Since étale morphisms are open,

∪Ifi(Ui) ⊂ U is open. Hence, ∪Ifi(Ui) = U are equal and we deduce the claim.

Lemma 6.30. In the situation of the proper base change theorem, we may reduce to S

being affine and r1 being given by a geometric point r1 : Spec(k) → S with topological

image s ∈ S such that the induced κ(s) ⊂ k is a separable closure.

Proof. We may assume that r1 is a morphism of finite type of affine schemes by the

previous reductions. Then, the base change map is an isomorphism iff it is on stalks

for every point s′ ∈ S′ closed in its fibre by the previous corollary. Let s′ ∈ S′ be such

a point. Choose a separable closure κ(s′) ⊂ k. We obtain a commutative diagram

X ′0 X ′ X

Spec(k) S′ S

Gi

r2

d2 d1

s̄′ r1

with each square cartesian. The (cohomological) base change map corresponding to the

left square is an isomorphism by assumption. If the (cohomological) base change map
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for the outer square is an isomorphism, then, the natural transformation

Sh(EtX, C) Sh(EtX′ , C)

Sh(EtS, C) Sh(EtS′ , C) C
(−)s′

as well as its derived version are isomorphisms by corollary 6.8. This would prove the

claim. The composition s̄′◦r1 factorizes through some geometric point s̄ : Spec(K)→ S

with κ(s) ⊂ K a separable closure. We obtain a commutative diagram

X ′0 X0 X

Spec(k) Spec(K) S

d1

s̄′◦r1

s̄

with each square cartesian. We need to prove the base change morphisms corresponding

to the outer square to be isomorphisms. By assumption, the base change maps corre-

sponding to the right square are isomorphisms. By corollary 6.8 it suffices to prove the

base change maps corresponding to the left square to be isomorphisms. We deduce the

field extension κ(s) ⊂ κ(s′) to be finite since s′ is closed in S′ ×S Spec(κ(s)) and r1 is

of finite type. Thus, K ⊂ k is purely inseparable. We deduce the claim by example

6.20.

Lemma 6.31. In the situation of the proper base change theorem, we may reduce to

r1 being given by the quotient map Spec(A/m) → Spec(A) for some strictly henselian

local ring (A,m).

Proof. We may assume S to be affine and r1 to be given by a geometric point

r1 : Spec(k)→ S

with topological image s ∈ S such that the induced κ(s) ⊂ k is a separable closure by

the previous lemma. Denote by OS,r1 the étale stalk of S at r1. Then, r1 factorizes as

Spec(k)→ Spec(OS,r1)→ S

for the canonical morphism Spec(OS,r1) → S such that OS,r1 → k is (up to isomor-
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phism) the quotient map at its closed point. We obtain a commutative diagram

X0 Xr1 X

Spec(k) Spec(OS,r1) S

r2

d2 d1

r1

with each square cartesian. By assumption, the base change maps corresponding to the

left square are isomorphisms. By example 6.18 the base change map

Sh(EtX , C) Sh(EtXr1 , C)

Sh(EtS , C) Sh(EtSpec(OS,r1), C) C(−)r1

as well as its derived version are isomorphisms. We deduce the claim by corollary

6.8.

Lemma 6.32. 2. of the proper base change theorem implies 3., i.e. we may restrict

from general torsion sheaves to sheaves of Z/n-modules with n > 0.

Proof. We may assume that r1 is given by the quotient map

Spec(A/m)→ Spec(A)

for some strictly henselian local ring (A,m) by the previous lemma. Let F be an abelian

torsion sheaf on EtX . The base change map in question is given by

Hq
et(X,F)→ Hq

et(X
′, r2∗F)

as in example 6.17. Define Fn = ker(F ·n→ F) ∈ Sh(EtX ,Z/n Mod) ⊂ Sh(EtX ,Ab) to be

the kernel of pointwise multiplying with n for every n > 0. Then, the induced cocone

(Fn → F)N is a filtered colimit cocone. We obtain a compatible family of morphisms

Hq
et(X,Fn)→ Hq

et(X
′, r2∗Fn)

since the base change map is functorial. Those are isomorphisms by assumption. Ob-

serve X,X ′ to be quasi-compact and quasi-seperated, since they are proper over affine
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schemes. Thus, the induced cocones

(Hq
et(X,Fn)→ Hq

et(X,F))N

and

(Hq
et(X

′, r2∗Fn)→ Hq
et(X

′, r2∗F))N

are colimit cocones by theorem 2.43. Combined this proves the claim.

We will give a reference for a proof of 1. in the proper base change theorem under

the reductions made above. Thus, we will assume 1. of the proper base change theorem

to be true for the rest of this section.

Corollary 6.33. Let

X ′ X

S′ S

d2

r2

d1

r1

be a cartesian diagram of schemes with d1 finite. Then, the cohomological base change

map is an isomorphism.

Proof. Observe d1∗ and d2∗ to be exact by theorem 3.30. Since the base change map

is an isomorphism we deduce the claim.

Lemma 6.34. In 2. of the the proper base change theorem, we may reduce to r1 being

given by the quotient map r1 : Spec(A/m) → Spec(A) for (A,m) the strict henselian-

ization of a localization of some finite type Z-algebra at some prime ideal. In particular,

A is noetherian.

Proof. We may assume r1 to be given by the quotient map

Spec(A/m)→ Spec(A)

for some strictly henselian local ring (A,m) by the previous lemma. We can prove that

there exists a filtered colimit cocone

(fi : Cj → A)I

with Ci strictly henselian and of the desired form by using the universal property of

the strict henselianization. Denote by ki the residue field of Ci at its closed point for

each j. Then, the induced

(ki → k)I
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is also a colimit diagram. Observe (Spec(A) → Spec(Ci))Iop to be a cofiltered limit

cone. Then, there exists some proper morphism

d1i0 : Xi0 → Spec(Ci0)

such that d1i0 ⊗Ci0
A ∼= d1 by corollary 2.30. Define Xi = Xi0 ⊗Ci0

Ci to be the

respective pullback for all i→ i0. Then, the induced cones

(φi : X → Xi)Iop/i0

and

(φ′i : X ′ → Xi ⊗Ci ki)Iop/i0

are cofilered limit cones. Denote by

r2i : Xi ⊗Ci ki → Xi

the induced morphism. Let F ∈ Sh(EtX,Z/n Mod) be a sheaf. Recall Sh(EtX,Z/n Mod)

to be locally finitely presentable since X is quasi-compact and quasi-separated. Thus,

F is a filtered colimit of finitely presentable objects. With a similar argument as in the

previous lemma, we may assume F to be finitely presentable. Without loss of generality

there exists some F i0 ∈ Sh(EtXi0
,Z/n Mod) finitely presentable such that φ∗i0 F i0 ∼= F

are isomorphic by theorem 2.31. Since the induced square

X ′ X

Xi ⊗Ci ki Xi

r2

φ′i φi

r2i

commutes, we obtain a commutative square

Hq
et(Xi,F i) Hq

et(X,F)

Hq
et(Xi ⊗Ci ki, r2

∗
i F i) Hq

et(X
′, r2∗F)

with vertical arrows the base change maps associated to r2i resp. r2 and the horizontal

arrows as in example 2.59 by functoriality. By assumption, the left vertical arrow is

an isomorphism for all i. Furthermore, the horizontal maps induce colimit cocones

by example 2.59. We deduce the first claim. At last, the strict henselianization of a

noetherian ring remains noetherian by proposition 3.28.
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Remark 6.35. If 1. of the proper baseschange theorem holds, then, 2. is an iso-

morphism iff r2∗ takes injective sheaves to d1∗-acyclic objects by remark 6.15. Given

an injective sheaf I ∈ Sh(EtX,Z/n Mod) we deduce r1∗ ◦ Rqd1∗(I) ∼= 0 to be zero for

every q > 0. In particular, if 1. of the proper base change theorem holds, then, the

cohomological base change map 2. of Z/n-sheaves is an isomorphism iff

r1∗ ◦Rqd1∗(I) � Rqd2∗ ◦ r2∗(I)

is surjective for every injective sheaf I and q > 0.

Let us summarize the reductions regarding the cohomological base change morphism

made so far.

Corollary 6.36. Let f : X → Spec(A) be a proper morphism of schemes with (A,m, k)

a strictly henselian local and noetherian ring. Denote by i : X0 → X the fibre of f along

the closed immersion Spec(A→ A/m). If the unit of the adjunction i∗ a i∗ induces an

epimorphism

Hq
et(X,F)→ Hq

et(X0, i
∗F)

for all F ∈ Sh(EtX,Z/n Mod) and q, n > 0, then, the proper base change theorem 6.22

holds.

Proof. Those are the previous reductions combined with the calculation of the coho-

mological base change map in example 6.17.

A convenient technic to reduce from proper to projective morphisms is to use Chow’s

lemma, see [10, Tag 02O2]. Basically, this lemma allows us to replace proper by pro-

jective up to a surjective projective morphism.

Lemma 6.37. Let g : Y ′ → Y be a morphism of schemes surjective at the level of

topological spaces. Then, the unit µ of the adjunction g∗ a g∗ is pointwise a monomor-

phism.

Proof. By the triangle identities, g∗(µ) is pointwise a (split) monomorphism. Every

geometric point ȳ at Y admits up to a field extension a lift ȳ′ to Y ′ since g is surjective.

We obtain a commutative diagram

F ȳ (g∗g
∗F)ȳ

(g∗F)ȳ′ (g∗g∗g
∗F)ȳ′

µF

g∗(µF )

for every F ∈ Sh(EtY ,Z/n Mod). This proves µF to be stalkwise a monomorphism. In

particular, µ is pointwise a monomorphism.

https://stacks.math.columbia.edu/tag/02O2
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Lemma 6.38. Let

Y ′ Y

X ′ X

S′ S

d4

r3

d3

d2

r2

d1

r1

be a commutative diagram of schemes with each square cartesian and d1 and d3 proper.

Assume d3 to be surjective at the level of topological spaces. If the cohomological base

change map for the outer and for the upper square is an isomorphism, then, it is for

the lower square.

Proof. We need to prove that r2∗ turns injective Z/n-sheaves into d2∗-acyclic sheaves

by remark 6.35. Let I ∈ Sh(EtX,Z/n Mod) be injective. Choose an embedding

d3∗I ⊂ J

into an injective sheaf. Let µ be the unit of the adjunction d3∗ a d3∗. Then, the adjoint

morphism I ⊂ d3∗J of d3∗I ⊂ J is a monomorphism since it is the composition of the

morphism µI , which is a monomorphism by the previous lemma, and d3∗(d3∗I ⊂ J).

Since I is injective, I ⊂ d3∗J is split. Therefore,

Rqd2∗ ◦ r2∗(I) ⊂ Rqd2∗ ◦ r2∗(d3∗J) ∼= Rqd2∗ ◦ d4∗(r3
∗J)

is split injective. Because the base change map is an isomorphism for each of the above

squares, we obtain an isomorphism

Rqd2∗ ◦ r2∗(d3∗J) ∼= Rqd2∗ ◦ d4∗(r3
∗J).

On the other hand, Grothendieck’s spectral sequence yields a converging spectral se-

quence

Ep,q2 = Rpd2∗ ◦Rqd4∗(r3
∗J)⇒ Rp+q(d2 ◦ d4)∗(r3

∗J) = Ep+q .

Because cohomological base change is an isomorphism for the upper square, we obtain

Rqd4∗(r3
∗J) ∼= 0 for all q > 0. We deduce Rp+q(d2◦d4)∗(r3

∗J) ∼= 0 for all p+q > 0 since

the cohomological base change map is an isomorphism for the outer square. Combined,

we obtain

Rqd2∗ ◦ d4∗(r3
∗J) = 0

for all q > 0 and, hence, the claim.

We can now invoke Chow’s Lemma to reduce from proper to projective.
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Corollary 6.39. We may reduce in corollary 6.36 to f being projective.

Proof. Chow’s Lemma ([10, Tag 0200]) combined with remark [10, Tag 0201] yields a

commutative diagram

PnA X ′ X

Spec(A)

µ

g

i

f

with i an immersion, µ projective and surjective and PnA → Spec(A) the canonical

morphism. Therefore, the composition g = f ◦ µ is proper. Then, i is proper, hence, a

closed immersion since it is proper and an immersion. We deduce g to be projective. In

order to apply the previous lemma, we need to prove that corollary 6.36 implies 3. of

the proper base change theorem if we replace proper by projective in both. We prove

this by mindfully going through the above sequence of reductions and observe that we

can replace proper by projective in any of them. Then, the base change morphisms

correspending to the upper and outer cartesian squares of the diagram

Y ′ X ′

Y X

Spec(A/m) Spec(A)

d4

r3

µ

d2

r2

f

r1

are isomorphisms by our assumption. We apply lemma 6.38 to deduce the claim.

Lemma 6.40. We may reduce in corollary 6.36 to X0 having dimension less or equal

one.

Proof. We may assume that f is projective by the previous lemma. In particular, we

obtain a factorization
X PnA

Spec(A)

p

f

for some n ∈ N with p a closed immersion and PnA → Spec(A) the canonical morphism.

We have already seen the base change maps to be isomorphisms for finite morphisms.

Therefore, we may assume that f is the canonical morphism

PnA → Spec(A)

https://stacks.math.columbia.edu/tag/0200
https://stacks.math.columbia.edu/tag/0201
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since p is finite. By using the geometric argument of Lemma 7.3.8 in [2] we inductively

reduce to n = 1 and deduce the claim.

Remark 6.41. In the situation of lemma 6.40, the schemes X and X0 are quasi-

compact and quasi-separated. Since we may pass filtered colimits through cohomology

groups by theorem 2.43 and Sh(EtX,Z/n Mod) is locally finitely presentable, we may

restrict to F being finitely presentable.

Lemma 6.42. We may reduce in corollary 6.36 to dimX0 ≤ 1 and F = Z/n for n > 0.

Proof. We assume that X0 has dimension at most one by the previous lemma. We

prove that the base change map

Hq
et(X,F)→ Hq

et(X0, i
∗F)

is an isomorphism for every F by induction over q. For q = 0 this is the sheaf of sets case.

For general q > 0 we restrict to F being finitely presentable by the previous remark.

By theorem 2.26, we can embed F into some ⊕ni=1fi∗Ei with Ei finite Z/n-modules

and fi : Yi → X finite morphisms of schemes. Furthermore, every Ei ∼= ⊕ni
j=1Z/kij

decomposes as a finite direct sum for some kij > 0. In particular,

Ei ∼= ⊕ni
j=1Z/kij

are isomorphic. We may assume without loss of generality Ei = Z/ni since direct

images commute with finite direct sums. We first prove base changing to induce an

epimorphism

Hp
et(X,⊕ni=1fi∗Z/ni)→ Hp

et(X0, i
∗ ⊕ni=1 fi∗Z/ni)

for all p > q. Because cohomology as well as i∗ commute with finite direct sums

Hq
et(X,⊕ni=1fi∗Z/ni) ∼= ⊕ni=1 Hq

et(X, fi∗Z/ni)

are natural isomorphic and we may assume n = 1. By using corollary 6.33 combined

with the vertical version of corollary 6.8, we can show that it suffices to prove the base

change map

Hq
et(Y1,Z/n1Z)→ Hq

et(Y1,0, i
∗Z/n1Z)

to be an epimorphism with Y1,0 = Y1×Spec(A) Spec(k). Since f1 is finite and dimX0 ≤ 1

we obtain dimY1,0 ≤ 1. Thus, the above morphism is surjective for all q by assumption.

We deduce the induced

Hp
et(X,⊕ni=1fi∗Z/ni)→ Hp

et(X0, i
∗ ⊕ni=1 fi∗Z/ni)
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to be an isomorphism for all p ≤ q by induction hypothesis and to be an epimorphism

for all p ≥ q+1. Embed ⊕ni=1fi∗Z/ni into an injective sheaf I. Denote by G the cokernel

of the embedding. Observe

Hq
et(X, I) = 0

to be zero for all q > 0 since I is injective. The long exact sequences in cohomology

induce a commutative diagram

0 Hq
et(X,G) Hq+1

et (X,⊕ni=1fi∗Z/ni) 0

0 Hq
et(X0, i

∗ G) Hq+1
et (X0, i

∗ ⊕ni=1 fi∗Z/ni) Hq+1
et (X0, i

∗I)

∼=

with exact rows. Thus, the epimorphism

Hq+1
et (X,⊕ni=1fi∗Z/ni)→ Hq+1

et (X0, i
∗ ⊕ni=1 fi∗Z/ni)

is a monomorphism by the four lemma and, hence, an isomorphism. Let

0→ F ⊂ ⊕ni=1fi∗Z/ni � G′ → 0

be a short exact sequence. We obtain a commutative diagram

Hq
et(X,⊕n

i=1fi∗Z/ni) Hq
et(X,G′) Hq+1

et (X,F) Hq+1
et (X,⊕n

i=1fi∗Z/ni)

Hq
et(X0, i

∗ ⊕n
i=1 fi∗Z/ni) Hq

et(X0, i
∗ G′) Hq+1

et (X0, i
∗ F) Hq+1

et (X0, i
∗ ⊕n

i=1 fi∗Z/ni)

∼= ∼= ∼=

with exact rows from the long exact sequence in cohomology. We deduce

Hq+1
et (X,F)→ Hq+1

et (X0, i
∗F)

to be a monomorphism by the four lemma. Write G′ as a filtered colimit of finitely

presentable objects. By using filtered colimits to be compatible with cohomology groups

and to preserve both, monomorphisms and epimorphisms, we deduce

Hq+1
et (X,G′)→ Hq+1

et (X0, i
∗ G′)
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to be a monomorphism by using similar arguments. The four lemma applied to

Hq
et(X,G′) Hq+1

et (X,F) Hq+1
et (X,⊕n

i=1fi∗Z/ni) Hq+1
et (X,G′)

Hq
et(X0, i

∗ G′) Hq+1
et (X0, i

∗ F) Hq+1
et (X0, i

∗ ⊕n
i=1 fi∗Z/ni) Hq+1

et (X0, i
∗ G′)

∼= ∼=

proves Hq+1
et (X,F)→ Hq+1

et (X0, i
∗F) to be an isomorphism.

6.4.3 Proof of the core case

By the sequence of reductions made above, the proper base change theorem holds iff

the following theorem is true with 1. and 2. proved in this order.

Theorem 6.43. Let f : X → Spec(A) be a proper morphism with (A,m, k) a strictly

henselian local ring. Denote by i : X0 → X the fibre of f along the induced geometric

point Spec(k)→ Spec(A) and assume dimX0 ≤ 1. Then, the unit 1⇒ i∗i
∗ induces

1. isomorphisms

Γ(X,F)→ Γ(X0, i
∗F)

for all étale sheaves of sets.

2. epimorphisms

Hq
et(X,Z/n)→ Hq

et(X0, i
∗Z/n)

for all q, n > 0.

For 2. we may in addition assume that A is noetherian.

The proof of 1. is very technical and does need the theory of spectral spaces, which

we didn’t develope. Therefore, we only give a reference.

Proof of 1. [10, Tag 0A3S]

Proof of 2. By theorem 5.21, Hq
et(X0, i

∗Z/n) = 0 for all q > 3. Thus, we only need to

proof surjectivity for q = 1, 2.

The case q = 1:

Notice i∗Z/n ∼= Z/n to be isomorphic by corollary 2.16. We obtain a commutatitive

diagram

H1
et(X,Z/n) Tors

∼=(EtX ,Z/n)

H1
et(X0,Z/n) Tors

∼=(EtX0 ,Z/n)

∼=

i∗

∼=

https://stacks.math.columbia.edu/tag/0A3S
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as in remark 5.7 by the identification in theorem 5.3. Therefore, it suffices to lift

any Z/n-torsor F on X0 to one on X. By corollary 5.6, F is representable by a

finite étale X0-scheme U0. In order to apply theorem 4.8, we write A as a filtered

colimit of henselianizations of finite type Z-algebras. Then, we may assume A to be

the henselianization of some finite type Z-algebra at some prime ideal by using similar

arguments as in lemma 6.34. There exists up to isomorphism a unique étale and finite

X-scheme U and an isomorphism U ×X X0
∼= U0 by theorem 4.8. It remains to prove

that hU admits a Z/n-torsor structure such that the composition F ∼= hU0
∼= i∗hU is

an isomorphism of torsors. By Yoneda’s Lemma, the action

σ0 : Z/n× hU0 → hU0

is induced by a morphism tZ/nX0 ×X0 U0 → U0. Notice that both are finite étale

X0-schemes. Therefore, this morphism lifts uniquely to a morphism tZ/nX ×X U → U

by theorem 4.8. Hence, we obtain a group action

σ : Z/n× hU → hU

which is the pullback of the group action of F . Observe σ to define a torsor iff it induces

an isomorphism

(σ, pr2) : Z/n× hU → hU × hU .

Being an isomorphism can be checked at the level of étale schemes over X by Yoneda’s

lemma. Since the morphism in question is the pullback of the isomorphism

(σ0, pr2) : Z/n× hU0 → hU0 × hU0

it is an isomorphism by fully faithfulness in theorem 4.8.

The case q = 2:

Denote by p the characteristic of k. Write n = plk with k not divided by p. Then,

Z/n ∼= Z/pl ⊕ Z/kZ are isomorphic. It suffices to treat the cases n = k and n = pl

separately since cohomology commutes with finite direct sums.

The case n = pl:

There exists an increasing filtration

0 = (pl)/(pl) ⊂ Z/p = (pl−1)/(pl) ⊂ · · · ⊂ (p0)/(pl) = Z/pl

with each cokernel isomorphic to Z/pl as abelian groups. Thus, the constant sheaf Z/pl
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admits a finite filtration

0 = (pl)/(pl) ⊂ Z/p = (pl−1)/(pl) ⊂ · · · ⊂ (p0)/(pl) = Z/pl

with each quotient sheaf isomorphic to Z/p. Recall

Hq
et(X0,Z/p) ∼= 0

to be zero for all q > dimX0 = 1 by theorem 5.11. By induction on l combined with

the long exact sequence in cohomology, we deduce the claim.

The case n = k:

Since n is invertible in k = A/m it is invertible in A (as A is local hence A× = A−m).

In particular, each scheme X, X0 and X0,red is proper over some strictly henselian ring

with n invertible in it. Observe X0,red to be noetherian with dimX0,red less or equal

one since the topological spaces of X0 and X agree. Then, after selecting a primitive

n-th root of unity in A whose image is also a primitive n-root in A/m, we identify the

constant sheaf Z/n on X and X0 with the sheaf of n-th roots of unity on the respective

scheme by proposition 5.9. Let

j : X0,red → X0

be the canonical morphism. The canonical morphisms

OX,et → i∗OX0,et and OX0,et → j∗OX0,red,et

induce morphisms

RΓ(X,−)(O×X,et)→ RΓ(X0,−)(O×X0,et
)

and

RΓ(X0,−)(O×X0,et
)→ RΓ(X0,red,−)(O×X0,red,et

)

as in construction 2.17. The kummer sequence yields a commutative latter

· · · H1(X,O×X,et) H2(X,Z/n) · · ·

· · · H1(X0,O×X0,et
) H2(X0,Z/n) · · ·

· · · H1(X0,red,O×X0,red,et
) H2(X0,red,Z/n) · · ·

α

∼=

β

with lowest horizontal morphism being an epimorphism by corollary 5.24. We observe α
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to be the base change map in question by example 6.13. By corollary 3.36 we deduce β to

be an isomorphism. In particular, it suffices to prove both left vertical morphisms to be

epimorphisms. Along the isomorphism in lemma 2.38 combined with the compatibility

of remark 2.39 we need to prove the morphisms

Pic(X)→ Pic(X0)

and

Pic(X0)→ Pic(X0,red)

induced by the base change of quasi-coherent sheaves to be surjective. The second mor-

phism is surjective by corollary 2.42. Again, we reduce to A being the henselianization

of some finite type Z-algebra at a prime ideal in order to apply theorem 4.4. Define

Xn = X ⊗A A/mn+1 ∼= Spec
Xn+1

(OXn+1 /m
n) and X̂ = X ⊗A Â with Â the m-adic

completion of A. In particular, the defining ideal of Xn → Xn+1 is nilpotent. Applying

corollary 2.42, each induced

Pic(Xn+1)→ Pic(Xn)

is surjective. Therefore, we can extend L0 ∈ Pic(X0) to a compatible family (Ln)n∈N

with Ln ∈ Pic(Xn). By Grothendieck’s existence theorem 4.6, there exists a coherent

OX̂ -module L̂ and compatible isomorphisms L̂ ⊗OX̂
OXn

∼= Ln. We can prove L̂ to be

an invertible sheaf on X̂ since every Ln is an invertible sheaf on Xn. The functor

Pic(−⊗A X) :B Alg→ Set

is accessible by example 4.2. Then, there exists some L̃ ∈ Pic(X) such that the base

change of L̃ and L̂ become isomorphic in Pic(X0) by theorem 4.4. Since the base change

of L̂ is isomorphic to L, we deduce the claim.
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